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Abstract— In the quasi-static limit, it is shown that the neutral inclusion concept can be
applied to predict the transparency phenomenon. The transparency designs for a coated ellip-
soid for electromagnetic wave and a multilayered sphere for acoustic wave with metamaterials
have been proposed. In this paper, we will show how to cloak a solid object with elastic wave
metamaterial, where the shear wave in the system is nontrivial. Based on the Mie theory, it is
shown that the effective bulk modulus, mass density, and shear modulus of the assemblage made
of the coated spheres dominate the zero, the first and the second order scattering coefficients
of one coated sphere, respectively. So letting the first three scattering coefficients vanish, the
isotropic coated metamaterial can be determined in order to make a spherical object transparent
for elastic wave, this again corresponds to the neutral inclusion concept.

1. INTRODUCTION

Since the pioneer work by Alù and Engheta [1], who found that plasmonic metamaterials could
make a dielectric sphere with extremely low total scattering cross section, much works are devoted
to analyze the transparency induced by metamaterials. In quasi-static limit, this phenomenon
can be well predicted with the neutral inclusion concept [2], and it is easily applied for the more
complex configurations, such as a coated ellipsoid and particulate composites. This method is
suitable to cloak objects with dimension smaller than the operating wavelength. However, several
transparent coated spheres joined together to form an object with large electrical size can still be
transparent [3]. This may provide a new way to achieve transparency for an object with size larger
than the wavelength. By analogy, the acoustic transparency for a coated sphere with acoustic
metamaterials can also be designed [4]. Acoustic metamaterial is a kind of material, whose mass
density and bulk modulus could be negative. The peculiar properties of this kind of material have
been demonstrated experimentally [5, 6]. In this work, we will discuss how to cloak a solid spherical
object using elastic wave metamaterials.

2. NEUTRAL INCLUSION CONCEPT

Consider a random-shaped region characterized by permittivity ε∗ and permeability µ∗ (or bulk
modulus κ∗, shear modulus G∗, and mass density ρ∗) embedded in an infinite matrix with ε0 and
µ0 (or κ0, G0 and ρ0), the electromagnetic or acoustic waves propagate through this area as shown
in Figure 1. The region can be made of either a homogeneous medium or a heterogeneous material.
For the latter, ε∗ and µ∗ (or κ∗, G∗ and ρ∗) then denote the effective material parameters of the
heterogeneous material. It is not surprised that if the material property of this region is the same as
that of the background medium (matrix), the electromagnetic or stress fields outside of this region
will not be disturbed. In other word, the region will not be “seen” by an outside observer. When
the region is made of a homogeneous material, this is a trivial case. However if the region is made
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Figure 1: Scheme of neutral inclusion concept.
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of a heterogeneous material, there are many design possibilities for equating its effective material
property to that of the background medium, i.e., letting ε∗ = ε0 and µ∗ = µ0 (or κ∗ = κ0, ρ∗ = ρ0

and G∗ = G0). This is the basic idea of the “neutral inclusion” concept discussed extensively by
Milton [7]. A neutral inclusion is a simple pattern (coated sphere, coated spheroid, etc.). When a
neutral inclusion is embedded in a material made of assemblages of such pattern with gradual sizes
(in order to fill the whole space), it will not perturb the static electric, magnetic, or mechanical
fields outside of this inclusion. Although the neutral inclusion is defined in the static or quasistatic
case, it can still provide useful information in the full-wave scattering case.

3. ELASTIC WAVE SPHERICAL CLOAK

Consider a coated sphere system characterized by bulk modulus κi, shear modulus µi, and mass
density ρi, with the subscript i = 1, 2, 3 representing separately the sphere, the coating, and the
host medium. Let r1 denote the radius of the uncoated sphere and r2 the radius of the coated
sphere. A plane harmonic compressive wave propagates in the system. The total scattering cross
section Qsca of the coated sphere can be expressed as:

Qsca = λ2
3

∞∑

n=0

1
(2n + 1)π

[
|an|2 + n(n + 1)

α3

β3
|bn|2

]
, (1)

where α3 and β3 are propagation constants of longitudinal and transverse waves, respectively.
λ3 = 2π/α3 is the wavelength of the compressive wave in the host medium, an and bn are the
unknown scattering coefficients of scattered waves. Here we consider the host material has a
nontrivial shear modulus, the coated sphere will scatter both P and S waves due to the coupling
mode effect. In the Rayleigh limit, we have derived the first three scattering coefficients based on
the Mie theory as follows:
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Case II: Fluid shell and Solid host material
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Case III: Solid shell and Fluid host material
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κHS
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Case IV: Fluid shell and Fluid host material
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In every case, the parameter b0 is not important and thus not given here.
The following parameters κHS

eff , µHS
eff , ρM

eff and ρB
eff have been used, which are

κHS
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where f = (r1/r2)3. For a composite filled with coated spheres that are randomly distributed in
the host medium and have gradual sizes in order to fill the whole space, κHS

eff and µHS
eff denote its

effective bulk modulus and effective shear modulus calculated with the Hashin-Shtrikman (HS)
bound [8]. ρM

eff is the effective mass density obtained by the volume averaged method, whereas
ρB
eff is the effective mass density calculated with Berryman’s formula [9]. From Eqs. (2) ∼ (5),

we immediately get the transparency conditions κeff = κ3, µeff = µ3, and ρeff = ρ3, which are
consistent with those obtained directly from the neutral inclusion concept.

As an example, we employ an acoustic metamaterial to cloak an aluminum sphere (with a radius
r1 = λ3/5) immersed in water. The cloaking metamaterial has the desirable material parameters
κ2 = 0.47κ3 and ρ2 = 0.4ρ3, which slightly differ from the target value κ2 = 0.58κ3 and ρ2 = 0.55ρ3

predicted by the transparency conditions. There is a shifting effect when the quasi-static condition is
used to predict the dynamic phenomenon. Figures 2(a) and 2(b) present the near field contour plots
of the radial component of the scattered displacement field for an uncoated aluminum sphere and
that with an optimized cloak, respectively. It can be seen that a sphere without the metamaterial
cover leads to a strong and nonuniform scattering field in the fluid matrix, especially in the region
adjacent to the sphere. However, when the cloaking metamaterial is employed as the cover, the
scattering is dramatically reduced whilst the field strength within the cloak is large.
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Figure 2: Contour plots of radial component of scattered displacement field for (a) uncoated aluminum
sphere, and (b) same sphere with acoustic metamaterial.

4. CONCLUSIONS

With help of neutral inclusion concept, we derive the quasi-static transparency conditions for a
solid system. By investigating scattering properties of the composite sphere, we find that the
effective bulk modulus, mass density, and shear modulus of the assemblage made of the coated
spheres dominate the zero, the first and the second order scattering coefficients of one coated
sphere, respectively. These results can be used to obtain the transparency conditions, which agrees
with those given by neutral inclusion concept. Numerical results in dynamic case have been given
to confirm the proposed conditions.
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