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ABSTRACT In the context of the transformation method, we propose a general approach to
construct numerically the mapping generated by imposing specific boundary conditions with a
targeted function, and the necessary material and heat source spatial distributions are then derived
with the help of transformation method. The construction of mapping by grid generation method
through solving partial differential equations circumvents the limitation of device geometry, which
paves the way for designing more complex heat flow control devices. Two numerical examples
are also given to show how to design material properties and heat source in order to control
temperature patterns.
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I. INTRODUCTION
Heat flow control is an important issue for engineering applications, including thermal shielding

in hypersonic vehicles, thermal management for electronic systems and many others. The problem
consists of finding material spatial distributions in order to produce a desired heat flow or temperature
pattern with a targeted application, and this usually is classified as an inverse heat transfer problem
(IHTP). Many numerical, analytical, and semi-analytical approaches have been developed for solving
IHTPs[1–5]. Explicit analytical solutions are only limited to simple geometries. For more complex cases,
an optimization procedure is usually taken which is time consuming.

In recent years, the transformation method provides a novel technique for finding in a direct way
the necessary material distributions if a function is prescribed[6], and this method applies to any
physical system with form invariance of spatial transformation. Proposed initially for electrodynamics
by Pendry[7] and Leonhardt[8], this method has quickly found applications in control of acoustic/elastic
waves[9–12], matter waves[13] by distributing materials in space. For a heat conduction problem, the
governing equation has the same form as that of electrostatics, which is shown to be form invariant[14].
Therefore, it is natural to apply this method to design material distributions for heat flow control.
In fact, based on this method, Fan et al.[15] constructed an ellipsoidal cloak to control heat flow
to go around a cloaked region, Guenneau et al.[16] provided a detailed analysis on transformation
thermodynamics, and some interesting thermal devices are also proposed. Experimental works are
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recently conducted to validate the concept of heat flow or temperature pattern control based on the
transformation method[17,18].

Until now the methods mentioned above for controlling heat flow are limited to simple geometries
where analytical transformation functions are available. Therefore, it is necessary to develop a general
method based on the transformation method to manage heat flow with complex geometries, and this
is the objective of our work. As well known for electrodynamics, the spatial mapping of a complex
transformation device can be obtained by solving numerically PDEs, e.g. Laplace equation[19]. By
adjusting the boundary condition, design with quasi-isotropic material can also be achieved[20]. In this
paper, we will utilize this numerical method to evaluate the transformation function, and together
with the transformation method we will propose a general method to manipulate heat flow. The paper
is arranged as follows: In §II, the form invariance of the transient heat conduction equation will be
examined and the transformation relation for controlling heat flow will be provided. In addition, the
construction of transformation by a grid generation method will also be explained. Numerical examples
will be presented in §III to illustrate the proposed method. Some concluding remarks will be made in
§IV.

II. THEORETIAL ANALYSIS OF TRANSFORMATION-BASED HEAT

FLOW CONTROL WITH GRID GENERATION METHOD
2.1. Transformation-based Heat Flow Control

Consider the following transient heat conduction equation:

C(x)
∂T (x, t)

∂t
+ ∇ · q(x, t) = s(x, t) on Ω (1)

where T is the temperature, C the heat capacity, and s the heat source. q is the heat flux which is
related to temperature gradient by Fourier’s law

q(x, t) = −k(x) · ∇T (x, t) (2)

where k is the heat conductivity tensor. To establish a well-posed problem, the following Dirichlet and
Newmann boundary conditions on ∂Ω, and the initial condition on Ω must be specified

T (x, t) = TB(x, t) on ∂ΩT (3a)

q(x, t) · n = qB(x, t) on ∂Ωq (3b)

T (x, 0) = T0(x) in Ω (3c)

where n is the outward unit normal vector of the boundary, TB and qB the temperature and heat flux
on the boundaries, respectively. T0 is the initial temperature in the domain Ω.

Following the transformation method, we consider a spatial mapping x
′ = x

′(x), which maps the
original flat Cartesian space x to a curved space (or transformed space) x

′. It has been proved that
Eqs.(1) and (2) are form invariant under a general transformation[14]. Therefore if the space was spanned
with any curved coordinate, the governing equations take just the same form as those in the Cartesian
frame

C′(x′)
∂T ′(x′, t)

∂t
+ ∇′ · q′(x′, t) = s′(x′, t) (4)

q
′(x′, t) = −k

′(x′) · ∇′T ′(x′, t) (5)

where ∇′ =
[

∂/∂x1
′ ∂/∂x2

′ ∂/∂x3
′
]T

. In this transformed space, the physical quantities and material
constants are simultaneously transformed from the initial flat Cartesian space. By examining the form
invariance of Eqs.(4) and (5), the temperature T and heat flux q in the original space are found to be
mapped to

T ′(x′) = T [x(x′)], q
′(x′) =

A · q(x)

det(A)
(6)

where A is the Jacobian matrix

Aij =
∂x′

j

∂xi
(7)
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At the same time, the conductivity, heat capacity and source term are mapped to the transformed space
as

k
′(x′) =

A · k(x) · AT

det(A)
, C′(x′) =

C(x)

det(A)
, s′(x′) =

s(x)

det(A)
(8)

Different from the transformation optics or acoustics, where the interested transformed region is usually
embedded in an infinite open domain, in the transformation heat conduction, the transformation of
boundary and initial conditions has to be taken into account. Substituting Eq.(6) and transformed
boundary unit normal n

′ = A
−T · n into Eq.(3), we obtain the invariant form of the boundary and

initial conditions as the following:

T ′(x′) = T ′

B(x′) on ∂Ω′T (9a)

q
′(x′) · n′ = q′B(x′) on ∂Ω′q (9b)

T ′(x′, 0) = T ′

0(x
′) on Ω′ (9c)

where

T ′

B(x′) = TB[x(x′)], q′B(x′) =
qB(x)

det(A)
, T ′

0(x
′, 0) = T0[x(x′)]

Due to the form invariance of the governing equations and boundary/initial conditions, the action of
the spatial transformation may have two different interpretations: One is just description of the same
physical process in the curved space described by Eqs.(4), (5) and (9), which is shown in Fig.1(a). The
other is to interpret the coordinate x

′ in the curved space as if in a Cartesian frame, and the effect of the
spatial mapping is now mimicked by new material and boundary/initial conditions defined by Eqs.(8)
and (9), which is called geometry-material equivalency[7]. The second interpretation also endows the
spatial transformation a deformation meaning (Fig.1(b)), and a new heat flow pattern (a deformed heat
flow q

′ shown in Fig.1(b)) in the domain Ω′ can be constructed directly by mapping the flow pattern q in
Ω with the help of the mapping x

′ = x
′(x). By using the geometry-material equivalency, the necessary

material distribution to realize this heat flow pattern in the domain Ω′ is given by Eq.(8). Therefore,
if we want to control a heat flow pattern in a given domain, we can just deform its geometry so that
the q

′ follows the designed pattern (we realize a spatial mapping x
′ = x

′(x)), and Eq.(8) tells directly
the material necessary to realize such a function. For some simple cases, such as spherical cloak[15],
concentrator[16] and rotator[17], analytical mappings can be easily found. However for more complicated
devices, numerical methods have to be employed to establish the relation between the mapping and
functionality, which will be explained in the next section.

Fig. 1. Scheme of transformation method.

2.2. Construction of Transformation by Grid Generation Method

Once the function defined by a mapping is known, Eq.(8) gives automatically the necessary material
for realizing such a function. So the key point to control heat flow is to construct the functional mapping
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for a designed device. Usually the desired function is only prescribed by a known mapping on certain
boundaries, and the whole transformation enclosed by the boundary is left undetermined. Generally,
the whole mapping can be constructed by solving the following boundary value problem:

f(x(x′)) = 0 (10a)

x(x′)
∣

∣

∂Ω=ω′(x′) = ω
′(x′), x(x′)

∣

∣

∂Ω=b′(x′) = b(x′) (10b)

where x
′(x) denotes the original coordinate for a given point placed in the transformed physical space.

This process can be realized through different methods, and the commonly used method is a linear
interpolation from the boundary values, proposed originally for designing spherical and cylindrical
cloaks[7]. However, for a more complex geometry, especially when the boundaries ω′ and b′ cannot be
expressed in an analytical form, an alternative method should be proposed.

In planar grid generation[12], Eq.(10) describes a typical grid generation problem and Eq.(10a) is
called the grid generator. Among various forms of the available generators, the widely used one is
Winslow generator

∇2
x′(x(x′)) = 0 (11)

This generator is a classical elliptic partial differential equation, i.e. Laplace’s equation, and Dirichlet
boundary conditions are given as those in Eq.(10b). In this context, the mapping construction has
been transformed into a boundary value problem of Laplace’s equation, and it can be easily solved by
a numerical technique, e.g. the finite element method. This method is first proposed by Hu et al.[10]

for the design of electromagnetic devices with arbitrary shapes. After getting the mapping x(x′) by
solving Eq.(11) with the boundary condition Eq.(10b), the Jacobian matrix of the mapping, Eq.(7),
can be obtained by an inverse operation A = (∂x(x′)/∂x

′)−1, and the designed materials can then be
obtained from Eq.(8). Another advantage of this method is that the material property and distribution
in a designed region can be controlled and optimized. For example, it is proved that the grid generated
by Winslow generator is the smoothest one[21], and a quasi-isotropic material design can be obtained
if the boundary is allowed to slide, which generates a quasi-conformal mapping[11].

III. NUMERICAL APPLICATIONS
In this section, two examples will be given to illustrate the proposed method. In the first example, we

will show how to create a temperature pattern by properly designing the conductivity distribution for a
steady heat transfer problem. In the second example, we will illustrate how to produce a desired tempera-
ture pattern by managing heat source and material distribution for a transient heat conduction problem.

3.1. Temperature Pattern Control

A rectangle domain is prescribed with the following temperature boundary conditions T H = 393 K,
T L = 293 K on its left and right edges, respectively, while the upper and lower edges are insulated, which
is shown in Fig.2(a). If the domain is filled by a homogeneous and isotropic material with conductivity
k0 = 300 W/(m·K), the temperature distribution would be linear from left to right, as shown in Fig.2(b).
Now we want the temperature pattern in an arbitrary region B in the domain Ω (Fig.2(a)) to be shifted
to B′ in the domain Ω′ (Fig.2(c)) with the domain boundary conditions unchanged, and the question is
how to design the material in the domain Ω′. To this end, we consider the homogeneous and isotropic
domain shown in Fig.2(a) as the virtual space, and place the region B by a translation and rotation to
B′ (prescribing a spatial mapping), forming therefore a transformed domain Ω′. If this transformation
can be evaluated, i.e. A(x′) in the transformed domain Ω′, then the required conductivity distribution
can be obtained directly by Eq.(8).

Mathematically, the boundary conditions of the spatial mapping can be described as follows:

x(ω′) = ω, x(b′) = b (12)

Or specifically on the outer boundary of Ω′

x = x′, y = y′ (13)
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Fig. 2. Temperature pattern control for steady heat conduction: (a) Problem in a virtual space; (b) Temperature pattern
in the virtual space; (c) Transformation constructed by grid generation method; (d) The designed temperature pattern.

and on the boundary of the region B′, we have

x = (x′ − x0) cos(ϕ) + (y′ − y0) sin(ϕ)

y = −(x′ − x0) sin(ϕ) + (y′ − y0) cos(ϕ)
(14)

where (x0, y0) are translation distances in the x and y directions, and ϕ is the angle of rotation. In
this example, we set (x0, y0) = (0.5, 0), and ϕ = −π/4. With the transformation of the boundary
condition (Eqs.(13) and (14)), the whole transformation in the domain Ω′ can be generated numerically
by Winslow generator, i.e. Eq.(11), and the PDE module provided by the COMSOL package can be
used for such a purpose. The solution x(x′) is just the original coordinates for a point x in the domain
Ω. Figure 2(c) illustrates the deformed mesh lines from the original flat space Ω, and the line path
from left to right implies the direction of the heat flux.

With the obtained solution x(x′), the designed conductivity k
′ is evaluated by Eq.(8). To validate

the design, we calculate the temperature pattern with the obtained conductivity k
′ for a steady heat

transfer problem, and the result is shown in Fig.2(d). By comparison with the temperature pattern in
Fig.2(b), it is found that the temperature pattern in the region B′ are indeed translated and rotated
as desired.

3.2. Heat Source Transformation

In the second example, we will consider a transient heat transfer problem: an irregular domain Ω′

consisting of three regions with a temperature T = 293 K prescribed on its right edge and the others
remaining insulated, as shown in Fig.3(a). The initial temperature of the whole domain is set to be
Tini = 293 K. If the region 1′ is suddenly imposed and maintained with a homogeneous heat source
S0 = 108 W/m3, the temperature pattern of the regions 2′ and 3′ at time t = 1 s is illustrated in Fig.3(a)
if they are filled with a homogeneous and isotropic media with heat conductivity k0 = 300 W/(m· K)
and heat capacity C0 = 300 J/K . Now, if we want a linear temperature distribution from left to right
in the region 3′ at any instant, the question is how to design the source in the region 1′ and the material
property in the region 2′ in order to achieve this goal. To proceed, we consider an auxiliary problem:
a rectangle domain Ω is filled with a homogeneous material (k0 = 300 W/(m·K)), C0 = 300 (J/K)
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and a homogeneous heat source (S0 = 108 W/m3) is imposed suddenly in the region 1, the boundary
conditions remain the same as those in the domain Ω′, as shown in Fig.3(b), which forms a transient
heat conduction problem in the virtual space Ω. Now, we perform a spatial mapping from Ω to Ω′

which keeps the region 3 unchanged, and the regions 1 and 2 in Ω are mapped to the regions 1′ and
2′ in Ω′. Winslow generator will again provide the transformation in the whole domain, therefore the
necessary material and heat source to achieve a linear temperature pattern are determined by Eq.(8).
To be more specific, we consider a mapping with the following boundary conditions:

x = −0.051, y =
0.2y′

0.5
, on ∂ω1 (15a)

x = x′, y = 0.5 on ∂ω2 (15b)

x = x′, y = y′ on ∂ω3 (15c)

x = x′, y = −0.5 on ∂ω4 (15d)

where ωi, shown in Fig.3(c), represents different sections of the boundary. Note the choice of these
boundary conditions is not unique, and Eq.(15) just provides a possible option. With Eqs.(11) and (15),
the transformation can be easily obtained numerically by the PDE module of COMSOL package, which
is given in Fig.3(c). Once the mapping is evaluated, the necessary conductivity and capacity of the
material in the region 2′, together with the heat source in the region 1′ can be calculated from Eq.(8),
which are now position-dependent. To validate the design, the temperature profiles are calculated with
the obtained heat source S′ and material parameters (k′ and C′), and the result is shown in Fig.3(b)
for t = 1 s. Indeed, the temperature pattern is linear in the region 3′ at any instant, as designed.

Fig. 3. Temperature pattern control by heat source transformation: (a) Problem in a physical space and the tempera-
ture pattern with a homogeneous heat source and material at t = 1 s; (b) Temperature pattern in a virtual space; (c)
Transformation constructed by grid generation method; (d) Designed temperature pattern at t = 1 s.
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IV. CONCLUSIONS
By combing the transformation method and grid generation technique, we proposed a general method

to design material and heat source spatial distributions for heat flux or temperature control. The proposed
method can deal with heat flux control problems in a domain of an arbitrary shape with the help of
mapping generated by a numerical method. Two numerical examples are also provided to illustrate the
capacity for temperature pattern control in the case of steady and transient heat conduction problems.
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