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Abstract

Many micromechanical models can be obtained by embedding one single ellipsoidal pattern into matrix material to

derive localization relation, the direct influence of the other patterns is neglected. An extension of Ponte Castaneda and

Willis model (PCW) [J. Mech. Phys. Solids 43 (1995) 1919] to many patterns interaction is proposed for particulate

composites with an ellipsoidal distribution of particles. Compared to the models based on one single spherical pattern

(Mori–Tanaka model [Acta Metall. 21 (1973) 571] for an isotropic composite) or based on one single ellipsoidal pattern

(PCW model for an transverse isotropic composite due to ellipsoidal distribution of particles), the proposed method

gives better prediction on the overall elastic properties for particulate composites with finite particle concentration. The

extension of the elastic results directly to plasticity are performed with the help of secant moduli method based on

second-order stress moment, the prediction on the overall elastic and plastic properties for particulate composites

agrees well with the experimental results in literature.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Objective of micromechanics is to bridge the

macroscopic property of heterogeneous materials

from their microstructural parameters. To this

end, a number of models have been proposed, for

example Mori and Tanaka (1973) model, self-

consistent method (Hershey, 1954), generalized

self-consistent model (Christensen and Lo, 1979),
and some more recently proposed models such as
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double inclusion model (Hori and Nemat-Nasser,
1993), Ponte Castaneda–Willis model (Ponte

Castaneda and Willis, 1995) and effective self-

consistent method (Zheng and Du, 2001). With the

concept of pattern introduced by Bornert et al.

(1996), Hu and Weng (2000a), and Hu et al. (2001)

have shown that, in above-mentioned methods,

the localization relation is determined by embed-

ding one single isolate pattern into a reference
material. The pattern is usually chosen to be a

double ellipsoidal type: an ellipsoidal inhomoge-

neity is surrounded by another ellipsoidal cell. The

outer ellipsoidal cell is used to characterize local

inhomogeneity distribution (Ponte Castaneda and
ed.
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Willis, 1995; Hu and Weng, 2000a,b; Hu et al.,

2001; Zheng and Du, 2001). By choosing the ref-

erence material to be the yet unkown composite,

this leads to generalized self-consistent estimation,

and if the matrix is taken for the reference mate-

rial, the Mori–Tanaka method, double inclusion
model, Ponte Castaneda–Willis model, and effec-

tive self-consistent method can be recovered by

judiciously choosing the orientation and shape of

the double cells (Hu and Weng, 2000a; Hu and

Weng, 2000b; Hu et al., 2001). This means that the

previous methods (apart from self-consistent and

generalized self-consistent method) are intrinsi-

cally dilute in the sense that only one isolated
pattern is placed into the matrix material for de-

riving the localization relation, the direct influence

of the other patterns is ignored. Their predictions

may deviate from experimental results if the vol-

ume concentration of particles becomes large, as

shown by Ju and Chen (1994) for the Mori and

Tanaka (1973) model, a particular case of PCW

method for the isotropic distribution of particles.
The objective of this paper is to generalize these

models for finite particle concentration by con-

sidering many pattern interaction while conserving

their beautiful structures.

As concern as the modeling for finite concen-

tration of particles, Ju and Chen (1994) proposed

an interesting model for isotropic composites by

considering the statistical interaction of two
spherical particles. Molinari and Mouden (1996)

proposed to solve approximately a multi-particles

problem and they obtained the corresponding lo-

calization relation. Another route for the finite

concentration modeling is to introduce a high

order correlation function up to the third-order, as

the third-order bounds proposed by Beran and

Molyneux (1966); Milton (1981) and summarized
by Toquato (1991). An third-order estimate for the

shear and bulk moduli for an isotropic composite

is recently proposed by Torquato (1997, 1998),

which indeed improves the estimation for a finite

concentration of particles.

In this paper, we will propose an analytical

micromechanical model for predicting the elasto-

plastic behavior of an anisotropic composite with
finite particle concentration, and the ellipsoidal

distribution of particles introduced by Ponte
Castaneda and Willis (1995) is conserved for

modeling the overall anisotropic behavior of

composites. The paper will be arranged as follows:

the theoretical formulation of the problem is pre-

sented in Section 2, including the main idea, a new

way to determine localization relation, and also
the method to extend the elastic results directly to

plasticity; extensive numerical examples concern-

ing the overall modulus and the effective elasto-

plastic stress–strain relations of isotropic and

transversely isotropic composites are presented in

Section 3; the conclusion will be given in Section 4.
2. Formulation of problem

2.1. Effective elastic properties of composites

In this paper, we will consider particulate

composite with an ellipsoidal distribution of par-

ticles, proposed by Ponte Castaneda and Willis

(1995). As discussed in the introduction, many
micromechanical models simplify the multi-pat-

tern interaction problem by considering only one

single pattern in a reference material. When the

reference material is taken to be the matrix mate-

rial, this leads to the Ponte Castaneda–Willis es-

timate, and for the isotropic distribution of the

particle, the Mori–Tanaka�s method is derived. As
well know that Mori–Tanaka�s method can not
give good prediction for large particle concentra-

tion, this is, according to our opinion, due to the

fact that only one pattern is considered to build the

localization relation. In this paper, a new model

will be proposed to consider the direct interaction

of the particle. The main idea of this work consists

of generalization of Ponte Castaneda–Willis model

for considering multi-particle interactions. Fig.
1(a) and (b) show respectively the problems solved

for the localization relation by Ponte Castaneda–

Willis model and by the proposed method.

In PCW model, a single pattern of one particle

enclosed by an ellipsoidal cell is placed into the

matrix material under a reference strain. The

volume of particles to that of the outer ellipsoidal

cell is the particle volume fraction of the com-
posite, the detailed discussion of PCW method can

be found in references (Hu and Weng, 2000a,b
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Fig. 1. Localization problem: (a) single pattern model; (b)

proposed method.
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Fig. 2. Ellipsoidal distribution of mono-size particles.
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and Hu et al., 2001). In the present model, we

choose a large ellipsoid having the same shape and

orientation of the outer ellipsoidal cell of the

pattern, in this large ellipsoid many single patterns

are included to consider the direct interaction of

the particles, and this large pattern is placed into

the matrix material. When the outer cell of the
pattern is of a spherical shape, PCW model in this

case reduces to Mori–Tanaka�s estimate, and the
proposed method will give the estimation of an

isotropic composite with finite particle concen-

tration.
In the following, the problem to be solved with

infinite number of the particles with varying size is

simplified by finite number of mono-size particles,

as illustrated in Fig. 2. For an ellipsoidal distri-

bution, the ratio of average distance of particles in

the major axis direction of the distribution ellip-

soid to that in the minor axis direction is set to
equal to the aspect ratio of the distribution ellip-

soid, this is shown in Fig. 2, and the total volume

fraction of particles to that of the distribution el-

lipsoid is the volume fraction of particles for the

actual composite.

Assuming that there are N particles in the el-

lipsoidal region, if we can determine the average

stresses in these particles, and note them by

ei ¼ Hi : E
0 ð1Þ

where the index i ranges from 1 to N .
From an elementary micromechanical analysis,

the following exact relation holds (Hu and Weng,

2000a)

ðLc � L0Þ : E ¼
XN
i¼1
ciðLi � L0Þ : ei ð2Þ

where Lc, L0 and Li are the modulus tensors for

the composite, matrix and ith particle respectively.
ci is volume fraction of the ith particle. There is no
summation for the repeated indices.

With help of Eqs. (1) and (2) and noting that

there is only one population of particles, we have
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ðLc � L0Þ : E ¼ f ðL1 � L0ÞH : E0 ð3Þ

where H ¼ 1
N

PN

i¼1Hi, f is the volume fraction of
the particle for the composite. In order to elimi-

nate the reference strain E0 by the composite strain

E, here in this paper we will make use of the

concept introduced by Kuster and Toks€ooz (1974),
which is shown to be equivalent to the Ponte
Castaneda–Willis model (Hu and Weng, 2000a).

Now place an ellipsoid of the composite material

into a reference material (Here the reference ma-

terial is the matrix) under the same remote strain

E0 (Fig. 3), the shape and orientation of the com-

posite ellipsoid are the same as those of the

ellipsoid characterizing the distribution of the

particle. From the Eshelby�s inclusion theory (Es-
helby, 1957), we get the strain in the composite E

as

E ¼ Gc : E
0 ð4Þ

where Gc ¼ ðL0 � LcÞ�1 : L0 : Ac, Ac ¼ � SV �
�

ðL0 � LcÞ�1 : L0��1 and SV is the Eshelby tensor for

the composite inclusion.

From Eqs. (3) and (4), the effective modulus

tensor of the composite can then be derived as

Lc ¼ L0 : I
n

� f ½½ðI�M0 : L1Þ : H��1 þ fSV ��1
o
ð5Þ

where M0 is the compliance tensor of the matrix.
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Fig. 3. Concept of Kuster–Toksoz model.
Now the problem is focused on evaluation of

the quantity H, numerical methods can be em-

ployed (Shen et al., submitted), however in this

paper an approximate analytical method will be

proposed.

Now consider an infinite matrix containing
randomly located N particles, a remote strain E0 is

applied. According to the method proposed by

Zeller and Dederichs (1973), the strain at any lo-

cation r can be expressed by

eðrÞ ¼ E0 �
XN
i¼1

Z
Vi

Cðr� r0Þ : ½ðL1 � L0Þ : eiðr0Þ�dr0

ð6Þ
where Cðr� r0Þ is the modified Green function, Vi
is the region occupied by the ith particle.
Averaging Eq. (6) over the particle j (j ¼

1; 2; . . . ;N ), then

ej ¼ E0 �
XN
i¼1

1

Vj

	
Z
Vj

Z
Vi

Cðr� r0Þ : ½ðL1 � L0Þ : eiðr0Þ�dr0dr

ð7Þ
where ej is average strain in the jth particle.
In order to proceed, here we assume that the

strain in the particle i (i ¼ 1; 2; . . . ;N ) is uniform,
but it is different for different particles, then Eq. (7)

becomes

ej ¼ E0 �
XN
i¼1

Bij : ei ð8Þ

where Bij ¼ 1
Vj

R
Vj

R
Vi

Cðr� r0Þdr0dr
h i

: ðL1 � L0Þ,

when i ¼ j, Bij are the Eshelby tensor for a

spherical inclusion, and i 6¼ j, Bij characterizes the
interaction between the particle pair i and j. The
analytical expressions are derived by Berveiller and

Fassi-Fehri (1987), they are listed in the Appendix

A after a minor correction of printed errors.

Expression (8) provides N equations to deter-

mine Hi, in turn H, and the effective modulus

tensor of the composite with finite concentration

of particles can then be evaluated from Eq. (5). It
is clear that when the particle volume fraction is

small, the direct influence of the patterns can be

neglected, the localization problem can be deter-
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mined by only one single ellipsoidal pattern, the

proposed method reduces in this case to Ponte

Castaneda–Willis model.

2.2. Elastoplastic behavior of composites with finite

particle concentration

It is of interest to examine also the effective

nonlinear property of composites with the pro-

posed method. Here we will use the secant moduli

method based on second-order stress moment de-

veloped by Qiu and Weng (1992), and Hu (1996).

This method, apparently simple, has a firm theo-

retical basis, it can be interpreted as the variational
method proposed by Ponte Castaneda (1991), as

demonstrated by Suquet (1995) and Hu (1996).

Assuming that the matrix material follows a

power type hardening law

ry ¼ ry0 þ hðepe Þ
n ð9Þ

where ry0, h and n are initial yield stress, strength
coefficient, and work-hardening exponent respec-

tively, and epe is effective plastic strain.
The secant shear and bulk moduli of the matrix

at plastic strain epe are defined as

ls0 ¼ 1=ð1=l0 þ 3epe=ðry0 þ hðepe Þ
nÞ; ks0 ¼ k0 ð10Þ

where k0 and l0 are the elastic bulk and shear
moduli of the matrix.

The idea of the secant moduli method can be

explained as follows: for any applied R the matrix
is in plastic state, if the effective plastic strain of the

matrix epe is known, then the secant moduli of the
matrix (Eq. (10)), the composite secant moduli is

set to be the elastic moduli of a linear comparison

composite, this linear comparison composite has
the same microstructure as the actual composite,

and the elastic modulus of the matrix for the linear

comparison composite is set to the secant modulus

of the actual matrix. In order to determine the

evolution of the effective plastic strain of the ma-

trix epe as function of the applied load R, we have to
evaluate the average effective stress in the matrix

for the linear comparison composite, this can be
done with the method proposed by Hu (1996),

r2y ¼ 3=2hs : si0 ¼ R :

"
� 3ls

2

0

1� f
oMs

c

ols0

#
: R ð11Þ
where Ms
c is the secant compliance tensor of the

actual composite or the elastic compliance tensor

of the linear comparison composite, and it can be

determined with the proposed method in Section

2.1 (Eq. (5)). h
i0 denotes the average of the said
quantity over the matrix, s is the deviatoric part of

a stress tensor.

With the proposed method for the effective

moduli and the secant moduli method for plastic-

ity, the elastoplastic behavior of a particulate

composite can then be determined for an ellip-

soidal distribution and finite concentration of

particles. In the following section, the predicted
capacity of the proposed method will be illustrated

through some numerical examples and it will also

be compared with available experimental results.
3. Numerical application

3.1. Isotropic composite

For an isotropic composite, the ellipsoid for the

particle distribution becomes a sphere, and the

Mori–Tanaka�s method corresponds to the case of
one single spherical pattern. We also compare the

predicted results with the method proposed by Ju

and Chen (1994), the third-order estimate by

Torquato (1997), and also the experimental mea-
surement conducted by Simth (1976). The Young�s
modulus and Poisson�s ratio of the matrix and
particles are respectively E0 ¼ 3:0 GPa, m0 ¼ 0:4,
E1 ¼ 76 GPa and m1 ¼ 0:23, these data are taken
from the work of Simth (1976).

In our computation, 27 particles are randomly

placed in a spherical domain, it was also checked

that 8 particles (the volume fraction is kept the
same) suffice to give an accurate prediction. The

comparison results on the effective Young�s mod-
ulus and effective shear modulus of the composite

are shown respectively in Fig. 4(a) and (b).

For a particulate composite, it is found that the

prediction by the present method correlates better

with the experiment conducted by Simth (1976)

than those of the Mori–Tanaka�s method and the
third-order estimate, it gives almost the same re-

sults as that predicted by the method of Ju and

Chen (1994). It is also seen that the Mori–Tanaka�s
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method, a widely used model, underestimates se-

verely the effective moduli for particle concentra-

tions larger than 30% and the third-order estimate

indeed improve the estimation compared to the

lower bound estimate (Mori–Tanaka�s method),
but it still underestimates the effective moduli for a
relatively large volume concentration of particles

(the particle is the harder phase). As expected, the

proposed method converges to the Mori–Tanaka�s
model for small particle concentrations.

Now we apply the proposed method for a po-

rous glass, the experimental results are reported by

Walsh et al. (1965). The matrix elastic constants
are E0 ¼ 75 GPa and m0 ¼ 0:23, as also given by
Walsh et al. (1965). The comparison results are

shown in Fig. 5(a) and (b).
It is found that the proposed method again

agrees well with the experimental data, this time

the proposed method predicted a little stiffer bulk

modulus than that given by Ju and Chen (1994),

and the predictions for the effective shear modulus

for the porous material are almost the same for the

proposed method, Ju and Chen�s model and the
third-order estimate.
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As concern as the prediction of overall elasto-

plastic property for composite materials, we apply

the proposed method to a metal matrix composite,

the experimental results are given by Yang and

Picard (1991). The comparison results are shown

in Fig. 6(a), the simulation of the matrix stress and
strain curve is also included in the figure. For

comparison, we also include the predicted results

by Mori–Tanaka�s method in Fig. 6(b).
As shown in Fig. 6, the present method give a

good prediction up to 50% particle volume frac-

tions. On the contrary, Mori–Tanaka�s method
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Fig. 6. Comparison of prediction and experiment for a metal

matrix composite: (a) proposed method; (b) Mori–Tanaka�s
method.
gives a poor prediction even for 30% particle vol-

ume fraction. As demonstrated for elasticity and

plasticity, the proposed method can be applied for

predicting the elastoplastic behavior of isotropic

composites with a high volume concentration of

particles.

3.2. Anisotropic composite

The proposed method is very flexible, and it can

be applied to predict the anisotropic behavior of

composites for finite particle concentration due to

an ellipsoidal distribution of particles. For small

particle concentrations, the proposed method will
reduce to PCW�s model or Kuster and Toksoz
model, which is based on single ellipsoidal pattern

for localization relation.

For an ellipsoidal distribution, to simplify the

analysis, we firstly divide the distribution ellipsoid

into different sites according to the condition de-

scribed in Section 2.1, and then place the particles

on these sites. As for the isotropic case, 27 particles
are used in the computation, we have checked that

8 particles can also give an accurate prediction.

Since even for a spherical particle reinforced

composite, due to the ellipsoidal distribution of

particles, the composite as a whole is transversely

isotropic (Fig. 7), it has five independent elastic

constants. The aspect ratio of the distribution

spheroid is set to be two in the computation. The
predicted effective elastic constants by the present

method are compared with those predicted by

PCW�s method, which is the single pattern of the
present method.

As shown in Fig. 8, compared to PCW�s
method, as expected, the present method predicts

stiffer responses for both shear and Young�s mo-
duli in transverse and longitudinal directions re-
spectively. The difference between the predicted

results by the present and PCW�s models increases
significantly with increase of particle volume con-

centration. It is also found that the difference in

the transverse and longitudinal effective moduli of

the composite is more pronounced by the present

method.

With the secant moduli method based on sec-
ond-order stress moment, the overall anisotropic

plasticity of particulate composites can be easily
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investigated. We take the same example as in the

isotropic case for the material constants, the vol-

ume fraction of the hard particle is 26%. Fig. 9

shows the stress–strain curves predicted by the

present method in the transverse and longitudinal

direction respectively, they are also compared with

the results predicted by PCW�s method. As for the
isotropic case, the present method predicts signif-
icant stiffer responses compared to those by PCW�s
method. For example for the composite at 0.6%

macroscopic strain, the present method predicts

the macroscopic stress about 250 MPa, and only

200 MPa by PCW�s method.
Fig. 9 overall stress–strain curves in transverse

and longitudinal directions predicted by present

method and PCW�s model (f ¼ 26%, aspect ratio
of the distribution ellipsoid is 2).

Finally, it must emphasize that for an ellipsoi-

dal distribution of particles, in order to realize this

distribution, the aspect ratio of the distribution

ellipsoid and the volume fraction of particles must

satisfy some constraint conditions, as explained in
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references (Ponte Castaneda and Willis, 1995; Hu

and Weng, 2000b).
4. Conclusions

An analytical micromechanical method is pro-

posed to predict the overall elastic and plastic

properties of particulate composites with finite

particle concentrations, this method generalizes

one single pattern problem to many patterns in-

teraction for deriving the localization relation, and

it can take into account the particle interaction

more accurately in case of finite concentration of
particles. For an isotropic composite, the proposed

method based on multi-patterns interaction gives

better predictions compared to Mori–Tanaka�s
method (based on one single spherical pattern),

and for an anisotropic composite with an ellipsoi-

dal particle distribution, the present method gives

more stiffer predictions on overall moduli and el-

astoplastic stress and strain curves, compared to
PCW�s method (one single ellipsoidal pattern). As
expected, when volume concentration of particles

is small, the proposed method of multiple ellipsoi-

dal patterns reduces to PCW�s model.
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Appendix A. Expression fourth-order tensor Brs
ijmn

For two spherical particles r and s, Vs and xsi
denote respectively the volume and position (the

coordinate in the ith direction) of the particle s,
We denote the distance of two particles by �qq,
ni ¼ ðxsi � xri Þ=�qq, and a, b are the radius of the
particles r and s respectively. l and m are the ma-
trix shear and Poisson ratio. The fourth-order

tensor Brs
ijmn are given by (Mura, 1987).

Brs
ijmn ¼

1

16plð1� mÞw�rs
;ijmn

� 1

8pl
½dim/�rs

;jn þ djm/�rs
;in � ðA:1Þ
where

w�rs
;ijmn ¼ �Vs

1

�qq3
1

��
� 3
5
k2



dijdmn

�
þ dimdjn

þ djmdin

�
þ 15

�qq3
1

�
� 7
5
k2


ninjnmnn

� 3

�qq3
ð1� k2Þ dijnmnn

�
þ dimnjnn þ djmninn

þ dinnjnm þ djnninm þ dmnninj
�


ðA:2Þ

/�rs
;ij ¼ �Vs

dij � 3ninj
�qq3

� 

ðA:3Þ

and

k2 ¼ a2 þ b2

�qq2
ðA:4Þ

From above equations, we get, if the two particles
are placed along Ox3, the expressions for the
components of Brs

ijmn for r 6¼ s, which were given for
the first time by Berveiller and Fassi-Fehri (1987)

Brs
1111 ¼ Brs

2222 ¼
Vs

16p�qq3
1

lð1� mÞ 1

�
� 4m þ 9

5
k2



Brs
1122 ¼ Brs

2211 ¼
Vs

16p�qq3
1

lð1� mÞ

�
� 1þ 3

5
k2



Brs
1133 ¼ Brs

2233 ¼ Brs
3311 ¼ Brs

3322

¼ Vs
16p�qq3

1

lð1� mÞ 2

�
� 12
5
k2



Brs
1212 ¼ Brs

1221 ¼ Brs
2121 ¼ Brs

2112

¼ Vs
16p�qq3

1

lð1� mÞ 1

�
� 2m þ 3

5
k2



Brs
1313 ¼ Brs

1331 ¼ Brs
3113 ¼ Brs

3131

¼ Vs
16p�qq3

1

lð1� mÞ 1

�
þ m � 12

5
k2



Brs
2323 ¼ Brs

2332 ¼ Brs
3223 ¼ Brs

3232

¼ Vs
16p�qq3

1

lð1� mÞ 1

�
þ m � 12

5
k2



Brs
3333 ¼

Vs
16p�qq3

1

lð1� mÞ

�
� 8þ 8m þ 24

5
k2
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If r ¼ s, Brs
ijmn is degenerated to SijklMklmn, where Sijkl

is the Eshelby tensor for a spherical inclusion,

Mklmn is compliance tensor of the matrix material.
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