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Abstract A new class of beam finite elements is
proposed in a three-dimensional fully parameterized
absolute nodal coordinate formulation, in which the
distortion of the beam cross section can be character-
ized. The linear, second-order, third-order, and fourth-
order models of beam cross section are proposed based
on the Pascal triangle polynomials. It is shown that
Poisson locking can be eliminated with the proposed
higher-order beam models, and the warping displace-
ment of a square beam is well described in the fourth-
order beam model. The accuracy of the proposed beam
elements and the influence of cross-section distortion
on structure deformation and dynamics are examined
through several numerical examples. We find that the
proposed higher-order models can capture more accu-
rately the structure deformation such as cross-section
distortion including warping, compared to the existing
beam models in the absolute nodal coordinate formu-
lation.
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1 Introduction

The absolute nodal coordinate formulation (ANCF) is
proposed by Shabana in 1996 [1] as a non-incremental
finite element method in flexible multibody dynamics.
Global position and gradient vectors are selected as
the nodal coordinates, which leads to a constant mass
matrix, i.e., centrifugal and Coriolis inertia forces are
eliminated in the equation of motion. Therefore, it is
more advantageous to simulate a deformable body with
a large deformation and motion. Berzeri and Shabana
[2] have formulated the position vector of neutral axis
of a two-dimensional beam element with the absolute
nodal coordinate formulation, the beam is considered as
an elastic line similar to Euler–Bernoulli beam model,
and thus, the deformation of beam cross section is not
considered. For fully parameterized finite elements in
the absolute nodal coordinate formulation, Omar and
Shabana [3] have proposed a position vector of a two-
dimensional shear deformable beam, which is analo-
gous to Timoshenko beam model. Shabana and Yak-
oub [4] have introduced a 3-dimensional beam ele-
ment, which is able to consider transverse shear defor-
mation across beam cross section. In addition, other
position vectors, which are higher order along neutral
axis of beam and linear along cross section of beam, are
lately provided by Gerstmayr and Shabana [5]. Kerkkä-
nen et al. [6] proposed a linear two-dimensional shear
deformable beam element, in which a linear polyno-
mial is used along the neutral axis of the beam. With
the help of these fully parameterized position vectors,
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the deformation of beam cross section can be described.
However, the beam cross section remains plane and its
boundaries are still straight due to the assumed linear
variation of in-plane displacement or transverse coor-
dinates in the position vectors during deformation. To
circumvent this problem, recently, Li et al. [7] devel-
oped a two-dimensional higher-order representation for
deformation of beam cross section and the assumption
of planar cross section is relaxed using a quadratic vari-
ation along the transverse direction in the position vec-
tor, however, the beam cross-section distortion is not
examined in their numerical studies for the higher-order
beam element. Therefore, we can see that characteri-
zation of beam cross-section distortion in the absolute
nodal coordinate formulation is far from complete; this
is the objective of this paper. In fact, many higher-order
beam theories not formulated in the absolute nodal
coordinate formulation have been proposed to consider
beam cross-section distortion, for example, by Manju-
natha and Kant [8], Vinayak et al. [9], and Matsunage
[10]. In addition, these theories are frequently applied
to analyze dynamic response of composite beams [11–
13].

In this study, fully parameterized position vectors are
proposed in the absolute nodal coordinate formulation
to consider distortion of beam cross section. Inspired by
the unified formulation proposed by Carrera et al. [14],
linear, second-order, third-order, and fourth-order mod-
els for a 3-dimensional beam are proposed, in which
the transverse coordinates of the beam are given by
the polynomials like Pascal triangle to characterize the
cross-section deformation or distortion and these beam
position vectors will be expressed in a unified way.
In equations of motion, the elastic forces of the beam
elements are formulated by a three-dimensional contin-
uum mechanics approach; therefore, three-dimensional
beam models are in fact considered as a mechani-
cal solid with coupled axis, shear, bending, and tor-
sion deformations. However, the continuum mechanics
approach may lead to Poisson locking problem since
the assumed displacement in a linear model cannot pro-
vide the required relations among normal strains due to
Poisson’s effect. This problem can be removed using
second-order or third-order beam models, which are
denoted as higher-order beam model in the follow-
ing. The physical reason for removing Poisson lock-
ing problem is due to more accurate description of
beam cross-section deformation and this is fundamen-
tally different from the existing methods: such as the

selective reduced integration [15,16], the zero Pois-
son’s ratio assumption [17], and the neglecting Poisson
effect [6].

The paper is arranged as the following: global posi-
tion, gradient vectors, and shape functions of the pro-
posed beam models are explained in Sect. 2. The con-
tinuum mechanics approach is employed to formulate
elastic force of a general laminated composite beam,
and this is given in Sect. 3. Several numerical exam-
ples are provided to validate and illustrate the proposed
models in Sect. 4. Finally, some conclusions are given
in Sect. 5.

2 Linear and higher-order beam models

2.1 Position vectors of a spatial beam element

As shown in Fig. 1, a beam in structural mechanics is
idealized as a 1-dimensional object based on its cen-
terline. Thus, in a global coordinate system XYZ, the
position vector of any point on the beam can be written
in a unified way as

r (x, y, z, t) =
n∑

i=1

fi (y, z) ui (x, t) (1)

where x, y, and z are the coordinates in a local coordi-
nate system xyz, t is the time, the vector ui , which can
be the position or gradient vector, is a parameter vector
of the beam centerline, f , which is a function associ-
ated with the transverse coordinates y and z, is used to
describe deformation of beam cross section, and n is
the number of expansion terms.

In this paper, the function f is approximated
by means of Pascal triangle polynomials. Following
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Fig. 1 Position vector of any point and parameter vector of the
centerline on a beam

123



A finite element beam model

Fig. 2 Pascal triangle with its zeroth-order, first-order, second-
order, and third-order terms

the idea proposed by Olshevskiy et al. [18], and
Dmitrochenko and Mikkola [19], the position vector
of any point on the beam is given by

r =
(N+1)(N+2)/2∑

i=1

fi,α (y, z) ui (x, t) (2)

where the subscript α is the order of Pascal triangle,
as shown in Fig. 2, and N is the order of the beam
model, which is the maximum value of the α, that is,
α = 0 · · · N .

In the following, linear (N = 1), second-order
(N = 2), and third-order (N = 3) approximations
will be mainly discussed, and in the case of N > 1, the
beam model is called higher-order beam model in the
following.

2.2 Absolute nodal coordinate formulation of beam
element

Based on the beam models in Sect. 2.1, in the frame of
the absolute coordinate system (XYZ), the displace-
ment field of the beam is approximated using dis-
cretization and interpolation techniques of finite ele-
ment method, as shown in Fig. 3.

The parameter vector of beam centerline is approx-
imated by the following polynomials with respect of x

ui (x, t) =
m∑

j=0

x j d j,i (t) (3)

where the superscript j is the power of x , and the vector
d j,i is only associated with time t in dynamic analysis.

Fig. 3 Beam element in the local element coordinate system xyz

For a beam element with two nodes, the vector d j,i

is derived in terms of the selected position and gradient
vectors of the beam centerline. In the following, the
parameter vector u1, representing the position and the
slope of the beam centerline, is given by

u1 = d0,1 + xd1,1 + x2d2,1 + x3d3,1 (4)

which is a cubic interpolation polynomial and the other
parameter vectors ui (i = 2, . . . , n), which are con-
nected with the beam cross section, are given by cubic
and first-order interpolation polynomials, respectively.
Here, the parameter vector using the cubic polynomial
is named as the model A and is written as

ui = d0,i + xd1,i + x2d2,i + x3d3,i (i = 2, . . . , n) .

(5)

The model A is proposed to keep the same order on x
between the parameter vector u1 and the parameter vec-
tors ui (i = 2, . . . , n). In addition, the parameter vector
with the first-order polynomial is called the model B,
and it is written as

ui = d0,i + xd1,i (i = 2, . . . , n) . (6)

Based on the proposed parameter vectors (Eqs. (4) and
(5)), the nodal coordinates ep of the node p are given
by

ep =
[

rT
p,

∂rT
p

∂x
,

∂rT
p

∂ f2,1
,

∂2rT
p

∂x∂ f2,1
, . . . ,

∂ N rT
p

∂ f(N+1)(N+2)/2,N
,

∂ N+1rT
p

∂x∂ f(N+1)(N+2)/2,N

]T

(7)

which is called in the following as the model AN , and
the degrees of freedom are (N + 1)(N + 2). Here, for
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example,∂4rp/∂x∂ f8,3 of the partial derivatives means
∂4rp/∂x∂y2∂z.

In addition, the nodal coordinates of the node p are
also given based on Eqs. (4) and (6)

ep =
[

rT
p,

∂rT
p

∂x
,

∂rT
p

∂ f2,1
, . . . ,

∂ N rT
p

∂ f(N+1)(N+2)/2,N

]T

(8)

which is called as the model BN , and its degrees of
freedom are (N + 1)(N + 2)/2 + 1.

Here, we can see that the model B1 is the same as
the proposed 3-dimensional beam element by Shabana
and Yakoub [4]. In these nodal coordinates (Eqs. (7)
and (8)), rp is the position vector of the node p, and the
gradient vectors ∂rp/∂x, ∂rp/∂ f2,1, and ∂rp/∂ f3,1 are
the slope coordinates of the node p on the beam center-
line. The other gradient vectors, which are the second,
third, and fourth derivatives of the position vector with
respect to the transverse coordinates y and z, character-
ize distortion of beam cross section. However, a clear
and simple physical interpretation of these higher-order
derivatives is not straightforward, and some of them are
illustrated in Fig. 4. If the beam is straight at an initial
configuration, the slope coordinates will be a unit vec-
tor, and the other higher-order derivatives will be a null
vector.

The element shape function matrices can be derived
in terms of the assumed position vectors in Eq. (2) and
the selected nodal coordinates in Eqs. (7) and (8). It
is easily found that the element shape function matri-
ces can be composed of basic shape function matrices.
For the model A, the basic shape function matrices are
written as

S1A =
⎡

⎣
s1 0 0 s2 0 0
0 s1 0 0 s2 0
0 0 s1 0 0 s2

⎤

⎦ ,

S2A =
⎡

⎣
s3 0 0 s4 0 0
0 s3 0 0 s4 0
0 0 s3 0 0 s4

⎤

⎦ (9)

where s1 = 1 − 3ξ2 + 2ξ3, s2 = l
(
ξ − 2ξ2 + ξ3

)
,

s3 = 3ξ2 − 2ξ3, s4 = l
(−ξ2 + ξ3

)
, and ξ = x/ l, l is

the length of the beam element.
For the model B, the basic shape function matrices

are given by

S1B =
⎡

⎣
s5 0 0
0 s5 0
0 0 s5

⎤

⎦ , S2B =
⎡

⎣
s6 0 0
0 s6 0
0 0 s6

⎤

⎦ (10)

where s5 = 1 − ξ, s6 = ξ .
With help of the basic shape function matrices in Eq.

(9) for the beam model AN , the element shape function
matrix is given by

Fig. 4 The configuration of
a beam element using the
beam model A2
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S = [
f1,0S1A, . . . , f(N+1)(N+2)/2,N S1A,

f1,0S2A, . . . , f(N+1)(N+2)/2,N S2A
]

(11)

For the beam model BN , the element shape function
matrix is given by means of the Eqs. (9) and (10), lead-
ing to

S = [
S1A, f2,1S1B, . . . , f(N+1)(N+2)/2,N S1B,

S2A, f2,1S2B, . . . , f(N+1)(N+2)/2,N S2B
]
.

(12)

Therefore, in the proposed beam models, the global
position vector r of an arbitrary point in the proposed
elements can be written as

r (x, y, z, t) = S (x, y, z) e (t) (13)

in which the position vector is separated by the space
variable S and the time variable e. Additionally, for
deriving efficient formulations of evaluating the elastic
force and its Jacobian, the position vector r can be again
written as [5]

r (x, y, z, t) = ē (t) S̄ (x, y, z) (14)

where S̄ is the condensed shape function, and is given
by

S̄ = [
s1 s2 · · · sD/3

]T
(15)

where D is the number of the degree of freedom of the
nodal coordinate for a beam element, and it is equal to
2(N+1)(N+2) in the model AN , and (N+1)(N+2)+2 in
the model BN , respectively. In addition, the rearranged
nodal coordinate is written as

ē =
⎡

⎢⎣
e1 e4 · · · eD−2

e2 e5 · · · eD−1

e3 e6 · · · eD

⎤

⎥⎦ . (16)

3 Equations of motion

The governing equations are derived by means of the
virtual displacement. For the different beam models,
the virtual displacement of any point can be written
as δr = Sδe. In addition, the Hamilton’s principle is
applied as [20]

0 =
t∫

0

(δU + δW − δT ) dt (17)

where δU, δW , and δT are the virtual strain energy,
virtual work done by external applied force, and the
virtual kinetic energy, respectively.

3.1 Formulations of elastic force and its Jacobian

For a general laminated composite beam, the virtual
strain energy is given by

δU =
G∑

g=1

∫

V (g)

(
C̄(g)ε

)
· δε dV (g) (18)

where G is the number of ply, C̄(g) is the elastic matrix
for the gth ply in the element coordinate system, it is
related to Young’s modulus, Poisson’s ratio, and shear
modulus [21], and V is the volume.

Additionally, the strain vector ε can be derived from
the deformation gradient [22]

J = ∂r
∂r0

= ∂r
∂x

(
∂r0

∂x

)−1

= ē
∂S̄
∂x

(
∂r0

∂x

)−1

(19)

where r0 is the position vector of a point at a reference
time t0 and x = [x, y, z]T. Thus, the column i of the
matrix J is given by

Ji = ē
∂S̄
∂x

(
∂r0

∂x

−1)i

= ē Bi (20)

where the superscript i represents one column of the
matrix. With the deformation gradient in Eq. (20), the
strain is then written as [23]

ε =

⎡

⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

γxy

γyz

γxz

⎤

⎥⎥⎥⎥⎥⎥⎦
= 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1 · J1 − 1

J2 · J2 − 1

J3 · J3 − 1

2J1 · J2

2J2 · J3

2J1 · J3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ēi j ēik

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1
j B1

k

B2
j B2

k

B3
j B3

k

2B1
j B2

k

2B2
j B3

k

2B1
j B3

k

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

2

⎡

⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎦
(21)

where ε is the normal strain and γ is the engineering
shear strain. In the matrix ē, the subscript i refers to
the row number, and the subscripts j and k are related
to columns. In the column vector Bi , the subscripts
j and k refer to the row number. Their values are i =
1 · · · 3, j = 1 · · · D/3 and k = 1 · · · D/3, respectively.
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The elastic force is obtained directly from the virtual
strain energy, which is given by

Q (e) =
G∑

g=1

∫

V (g)

∂ε

∂e

T
C̄(g)ε dV (g) (22)

where the mth row of (∂ε/∂e)T is

(
∂ε

∂e

T
)

m

= ēi j

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1
j B1

k

B2
j B2

k

B3
j B3

k

B1
j B2

k + B2
j B1

k

B2
j B3

k + B3
j B2

k

B1
j B3

k + B3
j B1

k

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(23)

where m = i + 3(k − 1). The Jacobian of the elastic
force is given by

∂Q
∂e

=
G∑

g=1

∫

V (g)

6∑

w=1

(
∂ε

∂e w

)T

C̄(g)
w

∂ε

∂e

+
6∑

w=1

C̄(g)
w ε

∂
(

∂ε
∂e w

)T

∂e
dV (g) (24)

where the subscript w refers to the row number of the
matrices C̄(g) and ∂ε

∂e
Additionally, in Eq. (24), the mth row of the nth col-

umn of the second derivative of the strain with respect
to the nodal coordinate is written as

∂
(

∂ε
∂e w

)T

∂e mn
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1
j B1

k

∣∣∣
w=1

B2
j B2

k

∣∣∣
w=2

B3
j B3

k

∣∣∣
w=3

B1
j B2

k + B2
j B1

k

∣∣∣
w=4

B2
j B3

k + B3
j B2

k

∣∣∣
w=5

B1
j B3

k + B3
j B1

k

∣∣∣
w=6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

where m = i + 3(k − 1), n = i + 3( j − 1).
By means of Eqs. (21), (23), and (25), the integrals in

Eqs. (22) and (24) can be computed without operating
on the nodal coordinates; therefore, they are calculated
only once in the following evaluation of the elastic force
and its Jacobian.

3.2 Equilibrium equation of the system

The equilibrium equation of the system can be written
as

Më + Q (e) + F (e) = 0 (26)

where M is a constant mass matrix, and F is the gener-
alized external force matrix, such as gravity force and
external moment [24].

For a constrained mechanical system, the equilib-
rium equation of the system can be written as [25]
{

Më + �T
e λ = −Q − F

�(e, t) = 0
(27)

where � is the constraint equation, �e is the Jacobian
of the constraint, and λ is the Lagrange multipliers.

Finally, the equilibrium equation is solved by means
of the generalized-α method [26,27] and the integration
scheme of this method uses the following procedures

et+�t = et+�t ėt+�t2
(

1

2
−β

)
at+�t2βat+�t (28)

ėt+�t = ėt + �t (1 − η) at + �tηat+�t (29)

where �t is time increment, a is an auxiliary variable,
and

β = 1

4

(
η + 1

2

)2

, η = 1

2
− ρ∞ − 1

ρ∞ + 1
(30)

where ρ∞ is the spectral radius.

4 Numerical examples

In this section, several numerical examples are pro-
vided to validate the proposed beam models and to
illustrate their prediction capacity.

4.1 Poisson locking

Consider a cantilevered beam with a square cross sec-
tion and an external force F along Z -direction is
applied at the center point of the unsupported end cross
section, as shown in Fig. 5.

Geometry properties of the beam are: the length is
L = 2 m, and the height is h = 0.2 m. The beam is
made of an isotropic material, and its material proper-
ties are: Young’s modulus E = 69 GPa, and Poisson’s
ratio ν = 0.33. The externally applied force is F =
50 N. In Table 1, the displacements along Z -direction
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Fig. 5 Cantilevered beam with an end force loading

of the end center point with different discretization
are given and compared with the different beam mod-
els. Here, the results obtained using the beam element
Beam188 and solid element Solid45 of the commercial
software ANSYS are also given to validate the pro-
posed models. Additionally, using Euler-Bernoulli and
Timoshenko beam theories [28], the Z -displacements
are −1.4493 × 10−5 and −1.4608 × 10−5 m, respec-
tively. Obviously, it is seen in Table 1 that the models
A1 and B1 cannot give the correct result due to Poisson
locking. However, with the higher-order beam models,
the Poisson locking problem can be eliminated. Poisson
locking phenomenon is believed to arise from the fact
that the assumed displacement field in a linear beam
model cannot satisfy the required linear Hooke’s law,
i.e., εyy ∝ νεxx and εzz ∝ νεxx for isotropic materi-
als. To be more specific, in the proposed linear beam
model, the position vector is

r = u1 (x) + yu2 (x) + zu3 (x) (31)

and the normal strains can be written as [29]

εxx = 1
2

(∣∣∣ ∂u1
∂x + y ∂u2

∂x + z ∂u3
∂x

∣∣∣
2 − 1

)

εyy = 1
2

(|u2|2 − 1
)

εyy = 1
2

(|u3|2 − 1
)

(32)

It is clear that the relations εyy ∝ νεxx and εzz ∝ νεxx

cannot be satisfied due to the constant distributions of
εyy and εzz across the beam cross section. However, in
the proposed second-order beam model, the transverse
normal strains are

εyy = 1
2

(|u2 + 2yu4 + zu5|2 − 1
)

εzz = 1
2

(|u3 + yu5 + 2zu6|2 − 1
) (33)

In this case, the linear Hooke’s law can be satisfied;
thus, Poisson locking is eliminated by means of the
proposed higher-order beam models.

4.2 Cross-section distortion

A two-ends-fixed beam with a square cross section is
subjected to pressures on the upper and lower surfaces,
as shown in Fig. 6. This problem is examined to study
the distortion of beam cross section. The geometry and

Fig. 6 Two-ends-fixed beam with pressure loadings on the
surfaces

Table 1 Z -displacement of
the end center point:
uz × 105 m

No. of
elements

Beam188 A1 A2 A3 B1 B2 B3

5 1.4491 0.9137 1.3160 1.3177 0.9778 1.3512 1.3530

10 1.4578 0.9527 1.3854 1.3876 0.9852 1.4049 1.4069

20 1.4600 0.9704 1.4168 1.4195 0.9871 1.4291 1.4314

30 1.4604 0.9762 1.4265 1.4298 0.9875 1.4361 1.4386

40 1.4605 0.9791 1.4312 1.4349 0.9876 1.4392 1.4418

60 1.4606 0.9820 1.4357 1.4401 0.9877 1.4417 1.4447

80 1.4607 0.9835 1.4379 1.4428 0.9877 1.4427 1.4460

100 1.4607 0.9843 1.4392 1.4445 0.9878 1.4432 1.4468

Solid45: 4 × 4 × 50 = 1.4471 6 × 6 × 100 = 1.4511 10 × 10 × 100 = 1.4529
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Fig. 7 Cross-section deformation of a two-ends-fixed beam at
X = L/2

material properties of the beam are: L = 0.5 m, h =
0.05 m, E = 30 MPa, ν = 0.33, and the pressure
loadings are F1 = F2 = 5 cos (π Z/h) MPa.

In Fig. 7, the cross-section deformations at X =
L/2 are shown for the different models. The element
Solid186 is adopted for the finite element simulation,
and the number of elements is 20 × 20 × 200. For the
beam models, the number of elements is 40, which is
checked to be sufficient for convergence. As can be
seen in this figure, for the model A1, the boundaries of
the beam cross section remain straight during deforma-
tion. However, with the model A3 and finite element
method with the element Solid186, the cross section is
distorted, and they agree well with each other. The pre-
dictions by the model B are not shown here, since they
are almost the same as the predictions by the model A
for the corresponding order.

In addition, Fig. 8 shows the distribution of normal
stress σyy in the cross section at X = L/2. The results

Fig. 9 Simply supported laminated composite beam

of the model A3 and the finite element method with the
element Solid186 agree well, except the regions around
the four corners. We also emphasize that the degree of
freedom in the proposed beam model is much less than
that for finite element method with solid elements.

4.3 Laminated composite beam

Consider a simply supported beam composed of
graphite fabric-carbon matrix layers is subjected to uni-
formly distributed loading, as shown in Fig. 9. The
geometry of the beam is: length L = 10 m, and height
h = 0.1 m. The material properties of the orthotropic
composite layer are: Young’s moduli E11 = 173.06
GPa, E22 = 33.10 GPa, and E33 = 5.17 GPa in 1,
2, and 3 material directions, respectively; shear moduli
G12 = 9.38 GPa, G23 = 3.24 GPa, G13 = 8.30 GPa;
Poisson’s ratios ν12 = 0.036, ν23 = 0.171, ν13 =
0.250 [21]. The load F is 1000 Pa.

For the lay-up [0◦/90◦/0◦/90◦], the comparison
of transverse displacement, obtained using the model
B (40 elements) and finite element method ANSYS
(Shell181, 4 × 400 elements), is shown in Fig. 10(a)
and there is no significant difference for the consid-
ered models. However, for the lay-up [−45◦/45◦/
− 45◦/45◦], as shown in Fig. 10(b), the difference

Fig. 8 Normal stress σyy
(Pa) in the cross section at
X = L/2
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Fig. 10 Transverse
displacements of the
laminated beam under
uniformly distributed load

(a) (b)

Fig. 11 Cantilever beam with concentrated torque

between linear model (B1) and higher-order models
(B2 and B3) is significant, and the prediction by the
higher-order models agrees well with that by the ele-
ment Shell181.

4.4 Warping displacement

Consider a cantilevered beam with a square cross sec-
tion and a concentrated torque Mx is applied at the
unsupported end of the beam, as shown in Fig. 11.

The cantilever beam has a length L = 2 m and a
height h = 0.2 m, Young’s modulus E = 69 GPa,
Poisson’s ratio ν = 0.33, and the applied torque
Mx = 50 KN.m. The number of elements is 40 for
the beam models. In this section, the axial displace-
ment ux , which is also called the warping displace-

ment, is calculated for the cantilever beam with a con-
centrated torque, and the results obtained using model
B are shown in Fig. 12.

However, the results in Fig. 12 show that the even
with higher-order models up to the third order, the
prediction cannot converge to the analytical solution,
which is given by [30]

ux = θ (x) ω∗ (y, z) (34)

where θ is the angle of twist with respect to x and ω∗
is the warping function.

Figure 13a, b show the analytical result and the result
obtained using the model B4, respectively; it is found
that they agree with each other very well. The position
vector of the model B4 can be easily expressed with
the unified formulas proposed previously,

r = u1︸︷︷︸
α=0

+ yu2 + zu3︸ ︷︷ ︸
α=1

+ y2u4 + yzu5 + z2u6︸ ︷︷ ︸
α=2

+ y3u7 + y2zu8 + yz2u9 + z3u10︸ ︷︷ ︸
α=3

+ y4u11 + y3zu12 + y2z2u13 + yz3u14 + z4u15︸ ︷︷ ︸
α=4

(35)

(a) (b) (c)

Fig. 12 Warping displacement ux (m) of the cross section at X = L
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Fig. 13 Warping
displacement ux (m) on the
cross section X = L

(a) (b)

from which the corresponding nodal coordinates and
element shape function matrices can be obtained using
the same rule as shown in Eqs. (8) and (12).

4.5 Large twisted beam

In this section, a cantilever beam under a large torque
(Fig. 11) is studied to further show the capability of
the model B4. The problem of a largely twisted beam
has been previously reported [16,31,32], in which the
torsional angle and Von Mises stress are mainly ana-
lyzed. In the current study, the geometry and material
properties of the beam are: L = 2 m, h = 0.2 m, E =
69 GPa, ν = 0.33, and the torsional moment is Mx =
π Eh4/12L (1 + ν) which will result in 180 deg twist
of the beam according to the structural mechanics [16],
and the number of elements is 40. The twisted angles
are predicted to be 180.44 deg (B1), 220.41 deg (B4),
and 210.23 deg (Beam188) by the proposed models
and ANSYS, respectively. The beam is twisted approx-
imately to 180 deg in the model B1; this is because the
assumed approximate rigid cross section in the model
B1 is similar to that in the structural mechanics. In
addition, in Fig. 14, the predicted deformed configura-
tion and the contour of Von Mises stress of the twisted
beam are shown using the models B1, B4, and finite
element method (ANSYS) and we can see that the dif-
ference between predictions by the model B1 and the
model B4 is significant. However, the predicted results
by the model B4 and by the element Beam188 agree
well except for the free end cross section. In addition,
the stress-focusing effect on the free end cross sec-
tion can be obtained by the model B4, as shown in
Fig. 14(b). The formulation of the generalized external
force vector F (Eq. (26)) due to a moment Mx can be
found in the reference [24].

4.6 Natural frequency

Eigen frequency analysis is also performed to validate
the proposed models for structural dynamics analysis.
With the beam models, the natural frequency and the
associated mode shapes of a free beam can be obtained
by solving the following equation [33]
(

KT − ω2M
)

φ = 0 (36)

where ω are natural frequency, φ are the normal modes
of the system, and KT is the tangential stiffness matrix
of the system

KT = ∂Q (e)
∂e

(37)

which is a function of the general nodal coordinates e
defined at the initial configuration.

The examined beam is square in cross section and
made of an isotropic material, in which length is
L = 0.4 m, height is h = 0.02 m, Young’s modulus
is E = 70 MPa, Poisson’s ratio is ν = 0.3 and ν = 0,
and the mass density isρ = 1250 kg/m3. The predicted
frequencies are shown in Tables 2 and 3 for ν = 0.3 and
ν = 0, respectively. In Tables 2 and 3, the numbers of
elements in the proposed beam models and the element
Beam188 are 40, and there are 10×10×100 elements
in the analysis with the element Solid45. Since the first
six frequencies concern with rigid motions, they are
not included in the following discussions. In the case
of the models A1 and B1 (linear model) for ν = 0.3
(Table 2), the first three bending frequencies are obvi-
ously larger than those predicted by the other models,
due to the Poisson locking. However, in Table 2, the
bending frequencies predicted by the proposed models
except for the models A1 and B1 are in good agreement.
In Table 3 (ν = 0), the bending frequencies predicted
by all the models have no significant difference due to
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Fig. 14 Configuration and contour of Von Mises stress (GPa) of a twisted beam

Table 2 Natural
frequencies (Hz) of a free
beam for ν = 0.3

Model 1st Bend 2nd Bend 3rd Bend 1st Torsion 1st Axis 2nd Torsion 2nd Axis

A1 34.945 94.645 181.03 183.45 295.77 366.90 591.33

A2 30.154 81.922 157.38 183.45 295.75 366.90 591.17

A3 30.138 81.766 156.77 183.45 295.75 366.90 591.17

B1 34.956 94.754 181.46 183.50 295.77 367.28 591.33

B2 30.167 82.050 157.90 183.50 295.75 367.28 591.17

B3 30.151 81.893 157.28 183.50 295.75 367.28 591.17

B4 30.151 81.893 157.28 168.63 295.75 337.59 591.17

Beam188 30.161 81.993 157.69 169.75 295.88 339.76 592.22

Solid45 30.144 81.821 156.99 169.22 295.76 338.48 591.29
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Table 3 Natural
frequencies (Hz) of the free
beam for ν = 0

Model 1st Bend 2nd Bend 3rd Bend 1st Torsion 1st Axis 2nd Torsion 2ndAxis

A1 30.175 82.127 158.19 209.17 295.80 418.33 591.61

A2 30.175 82.127 158.19 209.17 295.80 418.33 591.61

A3 30.160 81.978 157.60 209.17 295.80 418.33 591.61

B1 30.185 82.223 158.58 209.22 295.80 418.76 591.61

B2 30.185 82.223 158.58 209.22 295.80 418.76 591.61

B3 30.170 82.073 157.98 209.22 295.80 418.76 591.61

B4 30.170 82.074 157.99 192.28 295.80 384.88 591.61

Beam188 30.188 82.261 158.75 193.54 295.88 387.39 592.22

Solid45 30.165 82.031 157.82 192.94 295.82 385.92 591.71

Fig. 15 Fall down of a clamed cantilever beam under its gravity

ν = 0 or suppression of Poisson effect. Furthermore,
for the axial frequencies, there is no significant dif-
ference for the considered models due to the fact that
they are less related to the deformation of the beam
cross section. However, the predicted torsion frequen-
cies using the higher-order beam models except the
model B4 are larger than the results obtained by finite
element method with the element Beam188 and ele-
ment Solid45.

4.7 Transient analysis of a falling soft beam

Consider an isotropic square beam clamped at one
end falls down under its gravity load, as illustrated in
Fig. 15. The beam has a length L = 0.35 m and a
height h = 0.01 m. The material properties are: mass
density ρ = 2150 kg/m3, Young’s modulus E = 7
MPa, Poisson’s ratio ν = 0.33, and gravity accelera-
tion is 9.81 m/s2.

The predicted position variations versus time of the
beam by the proposed beam models are illustrated in
Fig. 16(a–d) at different time instants, and the num-
ber of elements is 40, which is checked to be suf-
ficient for convergence, and the time step-size �t is
0.01 s and the spectral radius ρ∞ is 0.8. It is seen that
higher-order models can give more accurate predic-
tions compared to the linear one; it is also confirmed by

Fig. 16(d), which shows the Z -displacement of the tip
point of the beam as function of time predicted by dif-
ferent models. In Fig. 16, only the result of the model
B2 is shown since the results obtained by the other
higher-order models are similar with those by the model
B2.

Figure 17 show the distribution of axial normal stress
σxx of the beam at t = 0.45 s for the models A2 and
B2, respectively. The 10 beam elements are adopted
to more clearly illustrate stress discontinuity here. As
can be seen clearly in Fig. 17(b), in the case of the
model B2, the stress distribution is discontinuous due
to the linear interpolation in the parameter vectors of
the beam cross section (Eq. (6)). With the model A2,
however, the stress is continuous due to the interpo-
lation by cubic polynomials in the parameter vectors
(Eq.(5)), as shown in Fig. 17(a).

In Fig. 18, the energy balance of the falling soft
beam is examined with the model B2 and it is seen that
the total energy is conserved during the motion of the
beam. The results obtained by the other higher-order
models are similar with those by the model B2, and
they are not reported.

To compare the computational efficiency for the dif-
ferent beam models, the time of computation using the
Intel i3, 2.93 GHz, and 4 GB of RAM is shown in
Table 4. The pre-processing mainly includes the cal-
culation of some constant matrices, such as the mass
matrix and the integrals in the elastic force and its Jaco-
bian, and the solving time is the time used to solve
Eq. (27) by means of the constant matrices in the pre-
processing. In addition, total number of iterations for
evaluating the elastic force Q and total number of addi-
tion and multiplication operations (arithmetic opera-
tions) for evaluating the elastic force and its Jacobian
are also shown.
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Fig. 16 Dynamic responses
of a falling soft beam

(a) (b)

(c) (d)

Fig. 17 Distribution of axial normal stress σxx (Pa)

5 Conclusions

When a beam is subjected to a large deformation, the
distortion of its cross section may become significant.
To characterize this distortion with the absolute nodal
coordinate formulation, several higher-order models
for a beam element are proposed, and their position

Fig. 18 Energy balance of a falling soft beam

vectors are expressed in a unified way. The proposed
models in fact consider a beam as a solid by means of
the cross-section function f and the parameter vectors;
therefore, more deformation modes can be captured. It
is shown that Poisson locking problem can be prevented
by means of the higher-order beam models with the
high-order polynomials in the displacement approxi-
mation. Through a number of numerical examples, we
find that the model B2 is more efficient to investigate
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Table 4 Computation time
of the falling soft beam

Model Pre-processing
time (s)

Solving time
(s)

Total
time(s)

Evaluations
of Q

Arithmetic
operations

A1 43.1 8.0 51.1 106 7345

A2 682.0 51.1 733.1 116 29041

A3 5244.8 208.8 5453.6 114 80369

B1 9.2 3.3 12.5 108 3315

B2 79.4 10.9 90.3 113 9963

B3 483.2 37.3 520.5 117 24427

most of static and dynamic problems. However, the
fourth-order beam model should be adopted in the case
of large warping displacements of a beam with square
cross section.
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