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Membrane-type acoustic metamaterials (MAMs) have demonstrated unusual capacity in controlling

low-frequency sound transmission/reflection. In this paper, an analytical vibroacoustic membrane

model is developed to study sound transmission behavior of the MAM under a normal incidence.

The MAM is composed of a prestretched elastic membrane with attached rigid masses. To accu-

rately capture finite-dimension rigid mass effects on the membrane deformation, the point matching

approach is adopted by applying a set of distributed point forces along the interfacial boundary

between masses and the membrane. The accuracy and capability of the theoretical model is verified

through the comparison with the finite element method. In particular, microstructure effects such as

weight, size, and eccentricity of the attached mass, pretension, and thickness of the membrane on

the resulting transmission peak and dip frequencies of the MAM are quantitatively investigated.

New peak and dip frequencies are found for the MAM with one and multiple eccentric attached

masses. The developed model can be served as an efficient tool for design of such membrane-type

metamaterials. VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4892870]

PACS number(s): 43.20.El, 43.20.Ks, 43.40.Dx, 43.20.Mv [ANN] Pages: 969–979

I. INTRODUCTION

The problem of a membrane subject to dynamic mechan-

ical and/or acoustic loads is of great importance in many en-

gineering branches such as acoustic waveguides, sound and

musical instruments, and vibration and noise control. This

problem is revitalized by the recent experimental finding in

which a membrane with attached masses can achieve a high

sound insulation in low frequency ranges.1,2 The theoretical

problem of sound transmission through membranes and pan-

els has been investigated intensively for decades.3–5 For

example, an analytic solution in an integral form of the prob-

lem of an ideal stretched circular membrane under a plane

sound wave has been derived.6 To gain better acoustic prop-

erties and increase membranes’ potential energy, the mem-

brane carrying attached masses of finite area was suggested

and analyzed.7,8 It was realized that the added small mass

loadings can significantly affect vibration behaviors and

acoustic transmission properties of the membrane,9 which

provided many interesting potential applications in sound or

noise control schemes.10 A thin shim attached with a rigid

plate has been experimentally placed on a radiating structure

through an annular rigid element to reduce low frequency

sound radiation.11 A simplified two degree of freedom model

for this structure has been proposed by Ross and Burdisso to

analyze the dipole effect within the mechanism of radiation

reductions.12 However, compared with vibroacoustic studies

of the pure membranes, studies on membranes with distrib-

uted masses are not well established because of the difficulty

from its complex multiconnected boundary conditions.

The prototype proposed by Yang et al. now is recast into

a more general concept of membrane-type acoustic metamate-

rials (MAMs),1,2 which have been suggested to possess excel-

lent acoustic properties for low-frequency sound insulation.

Compared with the conventional sound attenuation materials

typically utilizing thermally-coupled dissipation mechanisms

and suffering from inadequate low frequency sound attenua-

tion, the MAMs can be designed to possess nearly total reflec-

tion for targeting low-frequency acoustic sources. The basic

microstructure of this MAM consists of a prestretched mem-

brane with one or many attached small heterogeneous masses

acting as resonators. Fixed outer edges are imposed by a rela-

tively rigid grid. The unusual low-frequency vibroacoustic

behavior was numerically characterized, and the response

spectrum shows separate transmission peaks at resonances.

The low-frequency sound transmission mechanism was also

numerically explained through effective mass density and av-

erage normal displacement by using the finite element (FE)

method, although the nearly total reflection of the MAM is of

limited frequency bandwidth. To address this issue, many

attempts on the MAM microstructure designs have been made

in producing multiple transmission loss peaks including the

number, distribution, and geometries of attached rigid

masses.13–15 The designed MAMs were validated by conduct-

ing experimental testing to measure transmission losses of
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samples. However, for optimized microstructure design and

better characterization of the MAM, a solid analytical model

to accurately capture its vibroacoustic behavior of the attached

masses is highly needed. The analytical method can also be

very useful in the initial design of MAMs for desired engi-

neering applications. The advantages of the analytical model

are its computational convenience and flexibility, which ena-

bles it to reveal the physical insight of the MAM. A simplified

theoretical study has been conducted to analyze the vibroa-

coustic behavior of the MAM with one attached mass.16 The

model can give reasonable predictions on the transmission

loss peak and valleys caused by the system’s antiresonance

and resonance motion. However, structural-acoustic couplings

and the attached mass motion are not properly explored.

In this paper, we develop a new vibroacoustic model to

investigate dynamic behavior of the MAM with one and mul-

tiple attached mass resonators. The general motion of the

rigid attached masses in finite domains is properly described

by using both translational and rotational degrees of free-

doms. The point matching approach is adopted to seek

eigenmodes of the MAM, in which interactions of the finite

rigid masses upon the deformable membrane are represented

by a set of distributed point forces along their boundaries. By

using the modal superposition method to solve a vibroacous-

tic integrodifferential equation, a local deformation field in

the membrane can be determined. What distinguishes this

study from others is that microstructure effects, such as

weight, size, and eccentricity of the attached mass, preten-

sion, and thickness of the membrane on the transmission

peak and dip frequencies of the MAM can be quantitatively

identified. It is hoped that such solutions may lead to general

conclusions that will be of help to the future MAM designer.

II. THEORETICAL MEMBRANE MODEL

Consider now a unit cell of an MAM, as shown in Fig.

1(a), where the deformable membrane is attached by an eccen-

trically circular mass in finite dimension. In the figure, the

membrane is subject to initial uniform tension T per unit

length. The radius and density per unit area of the membrane

are denoted as R and qs, and the radius and density per unit

area of the mass are a and qc. In the figure, d represents eccen-

tricity of the mass in the Cartesian coordinate system (x, y)

with origin O in the center of the membrane. The polar coordi-

nate (r, h) is also taken in the figure. Another local Cartesian

coordinate system (x0, y0) and its corresponding polar coordi-

nate system (r0, h0) are established with origin O0 in the center

of the mass. The inner boundary between the mass and the

membrane is denoted as some discrete points (xi, yi) in the

Cartesian coordinate system (x, y), (bi, Hi) in the global polar

coordinate system (r, h) and (a, H0i) in the local polar coordi-

nate system (r0, h0). In the study, we focus on the sound trans-

mission and reflection of the stretched MAM in a tube subject

to a plane normal sound wave, as shown in Fig. 1(b). Perfectly

absorbing boundary conditions are assumed in both ends of

the tube so that there will be no multiple reflected waves to

the MAM. In the study, the free vibration problem of the

MAM involved with the multi-connected boundaries such as

the fixed circular outer and displacement continuous eccentric

inner boundaries is first studied by using the point matching

approach.17 Then, the vibroacoustic coupling behavior of the

MAM will be analyzed through the modal superposition

theory, from which the sound transmission and reflection of

the MAM can be analytically determined. This model can also

be easily extended to analyze the acoustic behavior of the

MAM with multiple attached masses in arbitrary shapes.

A. Eigenvalue problem of the MAM

For the MAM, the attached mass is assumed to be per-

fectly bonded to the membrane and rigid compared with the

deformable membrane. To properly capture effects of the fi-

nite mass on the small deformation of the membrane, the

point matching scheme is applied by using distributed point

forces along the interfacial boundary between the mass and

the membrane. Therefore, the governing equation of the

membrane can be written as

qs

@2w x; y; tð Þ
@t2

� Tr2w x; y; tð Þ

¼
XI

i¼1

Qi tð Þd x� xið Þd y� yið Þ ; (1)

where wðx; y; tÞ is the out-of-plane displacement of the mem-

brane in the z direction, r2 ¼ ð@2=@x2Þ þ ð@2=@y2Þ or r2

¼ ð1=rÞð@=@rÞ½rð@=@rÞ� þ 1=r2ð@2=@h2Þ in the polar coordi-

nate, and the right-hand side comes from the summation of

distributed point forces at I collocation points along the inner

boundary of the membrane, d is the Dirac delta function.

Since only the steady-state response field will be considered,

the time factor eixt, which applies to all the field variables,

will be suppressed in the paper. Then, Eq. (1) in the polar

coordinate can be rewritten as

FIG. 1. (Color online) (a) The MAM attached with an eccentric mass.

(b) The MAM subjected to a normal acoustic loading in a cylindrical tube.
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a2w r; hð Þ þ @
2w r; hð Þ
@r2

þ 1

r

@w r; hð Þ
@r

þ 1

r2

@2w r; hð Þ
@h2

¼ �
XI

i¼1

Ni
bi

r
d r � bið Þd h�Hið Þ; (2)

in which a2 ¼ ðqsx
2=TÞ and Ni ¼ ðQi=biTÞ. The coordinate relations for collocation points are bi¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ2adcosðH0iÞþd2

p
and

Hi¼cos�1½dþacosðH0iÞ=bi�.
The exact solution of Eq. (2) can be obtained by using Lagrange’s method and performing integration as17

w r; hð Þ ¼
X1
n¼0

�n A1nJn arð Þ � 1

2

XI

i¼1

Nibi Yn arð ÞJn abið Þ � Jn arð ÞYn abið Þ
� �

u r � bið Þcos nHið Þ
( )

cos nhð Þ

þ
X1
n¼0

�n A2nJn arð Þ � 1

2

XI

i¼1

N�i bi Yn arð ÞJn abið Þ � Jn arð ÞYn abið Þ
� �

u r � bið Þsin nHið Þ
( )

sin nhð Þ; (3)

where A1n and A2n are arbitrary constants related to symmetric and antisymmetric modes with respect to the x axis, JnðarÞ and

YnðarÞ are Bessel functions of first and second kind of order n, respectively,

�n ¼
1

2
; for n ¼ 0

1; for n � 1;
and u r � bið Þ ¼

1; for r > bi

0; for r < bi;

(8<
:

Ni and N�i are two unknown constants related to point loadings for symmetric and antisymmetric modes.

Because the outer boundary of the membrane is fixed, we have

wðR; hÞ ¼ 0: (4)

Substituting Eq. (3) into Eq. (4) and solving for A1n and A2n, the displacement field of the membrane can be obtained as

wðr; hÞ ¼
XI

i¼1

NiFiðr; hÞ þ N�i F�i ðr; hÞ; (5)

where

Fi r; hð Þ ¼
X1
n¼0

bi�n
Jn arð Þ

2Jn aRð Þ Yn aRð ÞJn abið Þ � Jn aRð ÞYn abið Þ
� �

cos nHið Þ
�

� 1

2
Yn arð ÞJn abið Þ � Jn arð ÞYn abið Þ
� �

u r � bið Þcos nHið Þ
�

cos nhð Þ;

and

F�i r; hð Þ ¼
X1
n¼0

bi�n
Jn arð Þ

2Jn aRð Þ Yn aRð ÞJn abið Þ � Jn aRð ÞYn abið Þ
� �

sin nHið Þ
�

� 1

2
Yn arð ÞJn abið Þ � Jn arð ÞYn abið Þ
� �

u r � bið Þsin nHið Þ
�

sin nhð Þ:

The unknown constants Ni and N�i can be determined through the inner boundary condition of the membrane.

For the attached mass in finite dimension, the general rigid motion can be completely described by the translation and

rotation in the local polar coordinate system (r0, h0) as

w0ðr0; h0Þ ¼ �ar0 cos ðh0Þ þ �br0 sin ðh0Þ þ �c; (6)

where �a, �b, and �c are three unknown constants.

Equations of the general motion of the circular mass including the translation and rotation can be written as

�
XI

i¼1

TNibi ¼ m
@2w0

@t2

����
r0¼0ð Þ
¼ �mx2�c; (7)
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�
XI

i¼1

TNibia cos H0i
� 	

¼ Iy0
@2w0y0

@t2
¼ �Iy0x

2�a; (8)

�
XI

i¼1

TN�i bia sin H0i
� 	

¼ Ix0
@2w0x0
@t2

¼ �Ix0x
2 �b; (9)

where m, w0y0 , w0x0 , Iy0 , and Ix0 are the weight of the mass, rota-

tional displacement with respect to the local y0 axis, rota-

tional displacement with respect to the local x0 axis, the

moment of inertia with respect to the local y0 axis, and the

moment of inertia with respect to the local x0 axis, respec-

tively. From Eqs. (7)–(9), the unknown constants �a, �b, and �c
can be obtained in terms of Ni and N�i .

Finally, based on the displacement continuity between

the mass and the membrane on every collocation point, we

have

w0ða;H0jÞ � wðbj;HjÞ ¼ 0: (10)

Substituting Eqs. (5)–(9) into Eq. (10) yields

XI

i¼1

Nið�aia cos ðH0jÞ þ �ci � Fiðbj;HjÞÞ

þ N�i ð�b
�
i a sin ðH0jÞ � F�i ðbj;HjÞÞ ¼ 0; (11)

where �ci ¼ ðTbi=mx2Þ, �ai ¼ ðTbia cos ðH0iÞ=Iy0x2Þ, and
�b
�
i ¼ ðTbia sin ðH0iÞ=Ix0x2Þ.

The eigenvalues of Eq. (11) are obtained by setting the de-

terminant of the coefficient matrix in the above system of equa-

tions for fNi; N�i g of size ð2I � 2IÞ to be zero, from which the

wave mode shapes of the membrane can be also obtained.

B. Vibroacoustic modeling of the MAM

Consider a plane sound wave is normally incident on

the MAM. The objective is to determine the pressure ratio

between the incident and transmitted sound waves.

According to the fact that the thickness of the MAM is

extremely small compared with the wavelength of low-

frequency sound in air, thickness effects of the MAM can be

ignored. To consider the vibroacoustic coupling behavior,

the governing equation of the acoustic excited membrane

with an attached mass can be expressed as

�x2qsw� Tr2w ¼ p1jðz¼0Þ � p2jðz¼0Þ

þ
XI

i¼1

Qi dðx� xiÞdðy� yiÞ; (12)

where p1 and p2 are pressure wave fields in the left and right

sides of the membrane.

Considering rigid side wall boundary conditions of tubes

at fixed boundary of the membrane, p1 and p2 can be

expressed as

p1 ¼ PIe
�ikaz þ

X1
~m¼0

X1
~l¼0

�A ~m~l J ~m kð ~m
~lÞ

r r

 �

cos ~mhð Þeik
ð ~m~lÞ
z z;

(13)

p2 ¼
X1
~m¼0

X1
~l¼0

�B ~m~l J ~m kð ~m
~lÞ

r r

 �

cos ~mhð Þe�ik
ð ~m~lÞ
z z (14)

where the acoustic wave number in air is ka ¼ x=ca with ca

being the sound speed in air, and the wave number along the z

direction is kð ~m
~lÞ

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkaÞ2 � ðkð ~m

~lÞ
r Þ2

q
with k

ð ~m~lÞ
r ¼ j0

~m~l
=R and

j0
~m~l

being the extrema of J ~mðzÞ, �A ~m~l , and �B ~m~l are constants.

The constant zeroth-order terms of the scattered wave

fields in Eqs. (13) and (14) can be expressed as

PR ¼ �A00; (15)

PT ¼ �B00; (16)

and the high order terms can be written as

p� ¼
X1
~m¼0

X1
~l¼1

�A ~m~l J ~mðkð ~m
~lÞ

r rÞ cos ð ~mhÞeik
ð ~m~lÞ
z z

þ
X1
~m¼1

�A ~m0J ~mðkð ~m0Þ
r rÞ cos ð ~mhÞeik

ð ~m0Þ
z z; (17)

pþ ¼
X1
~m¼0

X1
~l¼1

�B ~m~l J ~mðkð ~m
~lÞ

r rÞ cos ð ~mhÞe�ik
ð ~m~lÞ
z z

þ
X1
~m¼1

�B ~m0J ~mðkð ~m0Þ
r rÞ cos ð ~mhÞe�ik

ð ~m0Þ
z z: (18)

Based on Eqs. (13)–(18), the pressure wave fields can be

decomposed as plane waves (zeroth-order) and higher order

waves as6

p1 ¼ PIe
�ikaz þ PReikaz þ p�; (19)

p2 ¼ PTe�ikaz þ pþ: (20)

The out-of-plane displacement field can also be decomposed

as1

w ¼ hwi þ dw; (21)

in which h�i denotes the average of the parameter and dw is

the deviation of the out-of-plane displacement field.

Based on out-of-plane velocity continuous condition

between the air and membrane, we have6,16

@p1

@z

����
z¼0ð Þ
¼ @p2

@z

����
z¼0ð Þ
¼ x2qaw; (22)

where qa is the mass density of air. It is noted that the con-

tinuous condition in tangential air velocity is not taken into

account.

Substituting Eqs. (19)–(21) into Eq. (22) obtains

ika �PI þ PRð Þ þ @p�

@z

����
z¼0ð Þ
¼ �ikaPT þ

@pþ

@z

����
z¼0ð Þ

¼ x2qahwi þ x2qadw;

(23)
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where hwi is an average displacement field with the lateral

wave vector component being zero, therefore, the piston-like

(plane) motion of the MAM is attributed to the zeroth-order

plane waves PR and PT with wave vector component along

the z direction being kz ¼ ka. Therefore, the velocity conti-

nuity for the zeroth-order plane waves can be separated from

Eq. (23) as3,6

ikað�PI þ PRÞ ¼ �ikaPT ¼ x2qahwi; (24)

and the velocity continuity for higher order scattered waves

can also be written as

@p�

@z

����
z¼0ð Þ
¼ @pþ

@z

����
z¼0ð Þ
¼ x2qadw; (25)

where dw is attributed to the higher order scattered wave

fields with the lateral wave vector component not being zero.

The higher order scattered waves from the membrane

should satisfy6

p�jðz¼0Þ ¼ �pþjðz¼0Þ; (26)

and we let P ¼ p�.

Based on Eqs. (23)–(26), we have

PT ¼ ixqacahwi; (27)

PR ¼ PI � PT ; (28)

@P

@z

����
z¼0ð Þ
¼ x2qadw; (29)

p1jðz¼0Þ � p2jðz¼0Þ ¼ 2ðPI � PT þ Pðr; h; 0ÞÞ: (30)

The higher order scattered acoustic wave field Pðr; h; zÞ is

governed by3,18

D0Pðr; h; zÞ þ k2
aPðr; h; zÞ ¼ 0; (31)

with the rigid boundary condition along the inner surface of

the tube as

@P

@r

����
r¼Rð Þ
¼ 0; (32)

and D0 being the three-dimensional Laplacian.

Applying the appropriate divergence theorem with

Green’s function, we obtain18

P r; h; 0ð Þ ¼
ðp

�p

ðR

0

G r; h; 0; r�; h�; 0ð Þ

� @P r�; h�; z�ð Þ
@z�

����
z�¼0ð Þ

r�dr�dh�

¼ x2qa

ðp

�p

ðR

0

Gdwr�dr�dh�; (33)

where the Green’s function of the acoustic wave field is18

G ¼ eikaS

4pS
þ eikaS1

4pS1

; (34)

with the boundary condition being @G=@zjðz¼0Þ ¼ 0 and

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r�2 � 2rr� cos ðh� h�Þ þ ðz� z�Þ2

q
;

S1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r�2 � 2rr� cos ðh� h�Þ þ ðzþ z�Þ2

q
:

Combining Eqs. (12), (27), (30), and (33), the governing

equation of coupled vibroacoustic modeling of the MAM

can be obtained as

�qsx
2w� Tr2wþ 2ixqacahwi

� 2x2qa

ðp

�p

ðR

0

Gdwr�dr�dh�

¼ 2PI þ
XI

i¼1

Qi
1

r
d r � bið Þd h�Hið Þ; (35)

in which the integral operator represents the sound pressure

on the membrane due to the membrane’s motion.

To solve the integrodifferential equation, we use the

modal superposition method16,19 such that the motion of the

membrane is assumed to be

w ¼
Xþ1
k¼1

Wkðr; hÞqk; (36)

where qk is the unknown constant to be determined, and Wk

is the kth order mode shape function of the membrane. The

mathematical expression of Wk is wðr; hÞ in Eq. (3), where

Ni and N�i are solved from the eigensystem in Eq. (11) by

considering the displacement continuity boundary condi-

tions for w (displacement field of the membrane) and w0

(displacement field of the mass) on each collocation point

(the most critical locations are located in the interface

between the membrane and mass). Therefore, if the mem-

brane displacement mode shape function is convergently

solved with sufficient collocation points, Wk in the rigid

area should be almost the same as the displacement field of

the attached mass. The displacement mode function Wk

satisfies

qsx
2
kWk þ Tr2Wk ¼ �T

XI

i¼1

N kð Þ
i

bi

r
d r � bið Þd h�Hið Þ;

(37)

and the constrain conditions from the mass with xk and N
ðkÞ
i

being the kth order natural frequency and dimensionless con-

stants corresponding to Wk. By substituting Eq. (36) into

Eq. (35), multiplying each term with Wl and integrating over

the whole area of the MAM, combining Eqs. (7)–(9) and

Eq. (37), and considering the orthogonality of eigenfunc-

tions, we have
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ðx2
l � x2ÞðqspR2hW2

l i þ m�c2
l þ Iy0 �a

2
l þ Ix0

�b
2

l Þql þ
Xþ1
k¼1

2ixqacapR2hWlihWkiqk

�
Xþ1
k¼1

2x2qa

ðp

�p

ðR

0

Wl

ðp

�p

ðR

0

GðWk � hWkiÞr�dr�dh�rdrdh � qk ¼ 2PIpR2hWli; (38)

in which �al, �bl, and �cl are �a, �b, and �c corresponding to Wl,

respectively. The unknown constant qk can be determined by

solving the above linear equations.

The average velocity of the MAM can be calculated as

ixhwi ¼ ix
Xþ1
k¼1

hWkiqk: (39)

For the application of MAM, the considered acoustic wave-

length (k) for low frequency sound (50 to 1000 Hz) is usually

much larger the diameter (R) of the membrane (k� R).

According to Eq. (25), the higher order scattered wave fields

are caused by the deviation of the out-of-plane displacement

field dw. For the deviation motion, the longest lateral

wavelength is the diameter of the circular membrane [ðkkÞmax

¼ R¼ 20 mm in the current study]. Thus, the lateral compo-

nent of wave number of higher order scattered waves,

kk ¼ ð2p=kkÞ, should be greater than 314 m�1 (2p=0:02 m).

However, for the considered acoustic wave, the maximum

wave number is ðkaÞmax ¼ ðxmax=caÞ ¼ ð2p� 1000 s�1=
340 m=sÞ¼ 18.5 m–1. As a result, the normal component of

wave number (along the z direction) of higher order scattered

waves, kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

a � k2
k

q
, is always an imaginary number.

Therefore, the higher order scattered waves are eventually

evanescent waves because the normal (z) component of the

wave number is an imaginary number, and their amplitude

will decay exponentially along the normal (z) direction.

The acoustic transmission coefficient can be defined as

~T ¼ PT

PI
¼ ixqacahwi

PI
; (40)

and the intensity transmission coefficient is

TI ¼ j ~T j2: (41)

III. VALIDATION OF THE THEORETICAL MODELING

To evaluate the developed model, acoustic property pre-

dictions of the MAM from the current model will be com-

pared with those by using commercially available FE code,

COMSOL Multiphysics. In the FE modeling, the three-

dimensional solid element is selected for the membrane and

the attached mass. To simulate acoustic wave transmission

and reflection of the MAM, shown in Fig. 1(b), a normal inci-

dent acoustic wave is applied on the left of the tube. Multiple

physical boundary continuities, such as face loadings on the

solid and the acceleration within acoustic field, along the

interface between the membrane and the air are constructed.

A perfectly clamped boundary condition is defined on the

outer edge of the MAM, and the rigid wall boundary condition

is assumed on the side boundary of the cylinder tube. Two

acoustic radiation boundaries are assumed on both ends of the

system. Material properties and pretension of the membrane

and parameters of the attached mass are given in Table I. For

the current analytical model, the expansions in Eq. (11) are

truncated to the collocation points I¼ 15 on the half of the

inner circular boundary for the solution convergence, when

geometrically symmetric properties are considered.

The three lowest natural frequencies of the symmetric

modes of MAMs obtained from the analytical method and

FE analysis with both the central mass (d¼ 0 mm) and the

eccentric mass (d¼ 6 mm) are listed in Table II. Very good

agreement is observed for the first three resonant frequen-

cies, which confirms the accuracy and capability of the cur-

rent analytical model. The corresponding mode shapes from

the analytical method and FE analysis are also shown in

Fig. 2. It can be found that the analytical model can provide

almost the same predictions as those from the FE method. In

particular, it is also very interesting to notice that the predic-

tion from the current model can accurately capture geometric

effects of the attached mass on the deformable membrane

through the general mass motion. For the MAM with the

attached central mass, the first deformation mode is caused

by the translational motion of the attached mass, and the sec-

ond and third mode shapes are caused by the large vibration

of the membrane region with the central mass being motion-

less. However, for the MAM with the eccentric attached

mass, the first deformation mode is caused by both transla-

tional and rotational motions of the mass, the second mode

shape is mainly caused by the rotational motion of the mass

with almost no translational motion, and the third mode

shape is caused by the large deformation of the membrane.

Figure 3(a) illustrates the obtained intensity transmis-

sion coefficients of the MAM from the FE simulation (solid

curve) and analytical results (dashed curve) with a centric

attached mass (d¼ 0 mm) and its effective mass density. It is

observed that the acoustic behavior of the MAM does not

follow the prediction by the conventional mass density law;

TABLE I. Material properties and parameters of the membrane and mass.

Membrane Mass

Mass density (kg/m3) 980 7800

Young’s modulus (Pa) 2 � 105 2 � 1011

Poisson ratio 0.49 0.33

Thickness (mm) 0.28 —

Total weight (mg) — 300

Radius (mm) 10 3

Pretension (N/m) 51.2 0
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two transmission peaks are observed in the two lowest reso-

nant frequencies and there is a dip frequency between them.

Based on the mode shapes shown in Fig. 2, it is noticed that

the first transmission peak is caused by the eigenmode in

which the membrane and the attached mass vibrate in phase,

while the second peak is only due to the membrane’s motion.

The dynamic effective mass density of the MAM is defined

as qeff ¼ hp1 � p2i=hazi, in which hazi is the average accel-

eration of the membrane. Based on acoustic energy conser-

vation, it can be derived that Imðhp1 � p2i=haziÞ ¼ 0, and

therefore the MAM could be equivalent to a thin partition

with effective mass density qeff . As shown in Fig. 3(a), the

effective mass density of the MAM is a function of the fre-

quency. The incident wave will be totally transmitted

through the MAM (TI ¼ 1) at the frequency with qeff ¼ 0,

and will be totally reflected by the MAM (TI ¼ 0) at the fre-

quency when qeff goes to infinity. To further understand

wave mechanism, the relationship between effective mass

density and average surface velocity v of the MAM can be

derived and simplified as qeff ¼ ½2PIImðhviÞ=� xhvih�vi� by

combining Eqs. (27) and (30) and ignoring the higher order

scattered waves, where PI is the incident wave with real

number and h�vi is the conjugate of hvi. From the formula-

tion, it can be found that the effective mass density of the

MAM can be directly reflected by the imaginary part of hvi,

FIG. 2. (Color online) (a) Mode shapes of the MAM with a central mass. First row: Analytical solutions. Second row: FE solutions. (b) Mode shapes of the

MAM with an eccentric mass. First row: Analytical solutions. Second row: FE solutions.

TABLE II. Comparison between eigenfrequencies by analytical model and

FE simulation.

Analytical FEA

First mode (d¼ 0 mm) 145.3 Hz 145.9 Hz

Second mode (d¼ 0 mm) 971.6 Hz 985.5 Hz

Third mode (d¼ 0 mm) 1948.5 Hz 1981.8 Hz

First mode (d¼ 6 mm) 178.6 Hz 177.6 Hz

Second mode (d¼ 6 mm) 400.6 Hz 414.0 Hz

Third mode (d¼ 6 mm) 646.5 Hz 653.8 Hz
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for example, when the imaginary part of hvi becomes nega-

tive, the effective mass density will turn to positive. The

quantitative relation of the imaginary part of hvi and qeff is

shown in Fig. 3(b).

To clearly illustrate the unique dipole effect of the

MAM, the surface profile of imaginary part of velocity

(or real part of the displacement) of MAM is shown in Fig. 4

at the transmission dip frequency of wave transmission

(f¼ 266 Hz). It can easily be found that the motions of the

mass and membrane are basically out-of-phase, and

the average velocity (displacement) of the MAM is equal to

zero, which means that effective mass density of the MAM

becomes infinity and therefore no plane sound waves can be

transmitted at that frequency, according to Eq. (27).

To demonstrate capability of the current model, the in-

tensity transmission coefficient of the MAM with an eccen-

tric mass is also studied, as shown in Fig. 5. In the figure, the

radius, eccentricity, and weight of the attached mass are

4.0 mm, 3.0 mm, and 600 mg, respectively. Other material

properties of the MAM are the same as listed in Table I. It

can be found that our theoretical prediction agrees well with

that from the FE simulations. For example, the frequency

predictions about the first three symmetric modes from our

theoretical model are 125.6, 258.1, and 848.1 Hz, respec-

tively, and are 125.6, 264.1, and 858.7 Hz, respectively,

from the FE simulations. A new transmission peak is

observed, which is caused by the rotational motion of the

mass. Two transmission valleys are formed between the first

and the second transmission peaks and between the second

and the third transmission peaks. The wave mechanism is

the same as those discussed in Fig. 3(a).

IV. RESULTS AND DISCUSSIONS

The proposed analytical model will be further applied

for analyzing the coupled vibroacoustic behavior of the

MAM. Attention will be paid on microstructural parameter

effects such as weight, size, number, shape, and location of

the attached masses, pretension, and thickness of the mem-

brane on acoustic properties of the MAM. Specially, trans-

mission peak and dip frequencies of the MAM with central

or eccentric attached masses and two semicircular masses

will be quantitatively investigated, respectively.

A. A MAM with a central mass

As we know, the weight of the attached mass of the

MAM is a key parameter of selecting the resonant

FIG. 3. (Color online) (a) Validation of intensity transmissions of the MAM

with a central mass and its effective mass density. (b) Effective mass density

and imaginary part of the average velocity of the MAM with a central mass.

FIG. 4. Surface profile of the imaginary part of velocity of the MAM with a

central mass at transmission dip frequency.

FIG. 5. (Color online) Validation of wave intensity transmissions of the

MAM with an eccentric mass.

FIG. 6. (Color online) Effects of mass’s weight to peak and dip frequencies

of the MAM with a central mass.
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frequencies for low-frequency acoustic transmission appli-

cations. Figure 6 shows the effects of different weights of

the central mass on the two peak frequencies and one dip

frequency of the MAM. The dip frequency can be deter-

mined from the current model by setting the average dis-

placement within the MAM to be hWi ¼ 0. In the figure,

the material properties of the MAM are the same as listed

in Table I and only the weight of the mass is changed. It

can be found that the first peak and dip frequency will be

decreased significantly as the weight of the mass increases

from 50 to 300 mg, while the second peak frequency is not

sensitive to the weight change of mass. It is understandable

because the first eigenmode (peak frequency) is caused by

the translational motion of the mass, and the first resonant

frequency is inversely proportional to the square root of

the weight of the mass. On the other hand, the second

eigenmode (peak frequency) depends strongly on the

motion of the membrane, and the motionless mass effect

could be very small.

The mass geometry effects on the two peak frequencies

and one dip frequency of the MAM are illustrated in Fig. 7.

In the figure, the material properties of the MAM are the

same as listed in Table I and only the radius of the mass with

the same weight is changed. As shown in the figure, when

the size (radius) of the mass is reduced, the first peak fre-

quency remains almost unchanged, and both the second peak

frequency and the dip frequency are significantly decreased.

For example, when the radius of the mass is reduced from 3

to 1.5 mm, the second peak frequency is decreased from 965

to 780 Hz, the dip frequency is decreased from 265 to

170 Hz, and the first peak frequency is almost unchanged

from 145 to 120 Hz. Those findings could be used for the

MAM design of targeting different transmission peak and/or

dip frequencies.

Figure 8 shows the membrane’s pretension effect on

the two peak frequencies and one dip frequency of the

MAM. The material properties of the MAM are the same as

listed in Table I and only the pretension of the membrane is

changed. It is noticed that the first peak frequency and the

dip frequency are not sensitive to the change of the pre-

stress in the membrane, but the second peak frequency does

increase a lot with the change of the pre-stress. This is

because the increase of the pretension can lead to the

increase of elastic wave speed of the membrane, and there-

fore the second peak frequency increases as expected.

Finally, the membrane thickness effect on the two peak fre-

quencies and one dip frequency of the MAM is studied in

Fig. 9. We found that the increase of the thickness of the

membrane can only reduce the second peak frequency; nei-

ther the first peak frequency nor the dip frequency will be

affected significantly.

B. A MAM with an eccentric mass

Figure 10 shows acoustic transmissions of the MAM

with an eccentric attached mass with the eccentricity d¼ 6,

4, 2 mm, respectively. In the figure, the material properties of

FIG. 8. (Color online) Effects of membrane’s pretension to peak and dip fre-

quencies of the MAM with a central mass.

FIG. 9. (Color online) Effects of membrane’s thickness to peak and dip fre-

quencies of the MAM with a central mass.FIG. 7. (Color online) Effects of mass’s radius to peak and dip frequencies

of the MAM with a central mass.

FIG. 10. (Color online) Intensity transmissions of the MAM with an eccen-

tric mass with different eccentricities.
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the MAM are the same as listed in Table I. It is interesting to

notice that new transmission peak and dip frequencies are

observed, compared with the MAM with a central mass.

Based on the eigenmodes shown in Fig. 2(b), at the first peak

frequency, the eccentric mass has not only the strong transla-

tional motion, but also the rotational motion. The new peak

frequency is caused by the flapping of the mass in conjunc-

tion with a weak translational motion. The third peak fre-

quency is mainly caused by the vibration of the membrane in

conjunction with small translational and rotational motions of

the mass. Among these three peak frequencies, two dip fre-

quencies can be found. Figure 11 shows the trend of the three

peak frequencies with the change of the mass eccentricity. It

is evident that the first and second peak frequencies will

increase with the increase of the mass eccentricity, and the

third peak frequency will significantly decrease with the

increase of the mass eccentricity. For example, the third peak

frequency is reduced from 970 to 650 Hz when the dimen-

sionless mass eccentricity is changed from d/R¼ 0 to 0.6.

C. A MAM with two eccentric masses

The current model can be easily extended to calculate

the sound transmission of the MAM with multiple attached

masses by rewriting governing equations of Eqs. (7)–(9) for

FIG. 12. (Color online) The MAM symmetrically attached with two semi-

circular masses.

FIG. 11. (Color online) Effects of mass’s eccentricity to peak frequencies of

the MAM with an eccentric mass.

FIG. 13. (Color online) Mode shapes of the MAM with two symmetrically

attached semicircular masses: (a) first mode; (b) second mode; (c) third mode.

FIG. 14. (Color online) Intensity transmissions of the MAM with two sym-

metrically attached semicircular masses with different eccentricities.
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the multiple masses and applying appropriate displacement

continuity of Eq. (10) on all collocation points. Considering

a MAM with two symmetrically attached eccentric semicir-

cular masses, shown in Fig. 12, the first three eigenmodes of

the MAM are demonstrated in Figs. 13(a)–13(c) at frequen-

cies 215.5, 518.8, and 956.4 Hz, respectively. In the figure,

the membrane’s material properties, radius, and pretention

are the same as listed in Table I. The radius and the weight

of each semicircular mass are 4.5 mm and 200 mg. It can be

found that the first eigenmode is caused by translational and

rotational motions of semicircular masses in the same phase

with the membrane, while the second eigenmode is mainly

caused by the rotational motion of the masses. The third

eigenmode is due to the strong motion of the membrane in

the regions between the two masses. Figure 14 shows acous-

tic transmissions of this MAM with the eccentricity d¼ 3.5,

4.0, 4.5 mm, respectively. In the figure, the membrane’s ma-

terial properties and pretention are the same as listed in

Table I. The radius and the weight of each semicircular mass

are 4.5 mm and 200 mg. As expected, three transmission

peaks and two transmission dips are observed, which are

caused by three resonant and two anti-resonant (with W ¼ 0)

modes, respectively. In the model, we do not consider the

membrane’s dissipation effects; therefore, transmissions can

reach 100% at resonant frequencies. The trend of three peak

frequencies with the change of the mass eccentricity is

shown in Fig. 15. It is clear that the mass eccentricity could

provide an additional design space for tuning acoustic trans-

mission peaks and dips of the MAM at different frequencies.

V. CONCLUSIONS

In this paper, an analytical model is developed to cap-

ture the coupled vibroacoustic behavior of the MAM.

Different from existing models, the proposed model can pro-

vide highly precise analytical solutions of vibroacoustic

problems of the MAM, in which the finite mass effects on

the deformation of the membrane can be properly captured.

The accuracy of the model is verified through the compari-

son with the FE method. In particular, the microstructure

effects such as weight, size, number, shape, and eccentricity

of masses, pretension, and thickness of the membrane on

the resulting peak and dip frequencies of the MAM are

quantitatively investigated. It is found that the mass eccen-

tricity of the MAM can provide additional transmission peak

and dip frequencies.
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