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a b s t r a c t

For transformation acoustics (TA), the transformation relations for material and physical
field are not unique when they are mapped from a virtual space to a physical space;
the underlying mechanism is explored in this paper. We propose that the invariance of
a physical process during a spatial mapping will impose the constraint condition for the
transformation relation. This, together with the condition of energy conservation, provides
a general method to derive the corresponding transformation relation for any physical
process with the assumption of local affine transformation. When applied to TA, we show
that the constraint conditions are not enough to determine the transformation relations
completely, leaving a possibility to define them differently as found in the literature. New
acoustic transformation relations with constant density or modulus are also proposed and
validated numerically by constructing a two-dimensional acoustic cloak.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

For electromagnetic waves, the transformationmethod establishes the equivalency between a curved space andmaterial
space [1–4]. It provides an efficient way for finding material spatial distribution when a wave path is prescribed. With
the development of electromagnetic metamaterials, many interesting devices have been proposed, including cloaks [3,5],
concentrator and rotator [6,7], beam shifter/bender [8,9], and devices for illusion optics [10]. In parallel, with the help of
acoustic metamaterials [11–13], acoustic devices have also been designed by transformation acoustics [14–19], including
generalized acoustics, which consider acoustic waves in a more complex media in addition to classical fluid. Recently, an
acoustic cloak has been demonstrated experimentally [20]. The transformation methods for electromagnetic wave and
acoustic wave are called transformation optics (TO) and transformation acoustics (TA), respectively, both are the results
of form-invariance of governing equations under an arbitrary coordinate transformation. However, unlike TO, which has
a clear and unique relation between transformed and initial physical quantity (namely, permittivity, permeability, and
electromagnetic fields) [21,22], there exist many different relations between the transformed and initial mass density and
bulk modulus, as well as displacement and pressure for TA. For example, Chen and Chan [14] implicitly assumed that the
pressure is unchanged during the transformation, and they derived the corresponding transformation relations for themass
density and bulkmodulus. Milton et al. [15] supposed that the displacement has a special transformation, and consequently
they derived the transformation relations for the other physical quantities for generalized acoustics. Their results differ from
those proposed in [14]. Cummer et al. [16] proposed a new transformation relation for the displacement (or velocity), and
stated that the transformation relation for the displacement proposed in [15] is not suitable for TA. Norris [17] showed that
for a given mapping, the transformation relation for TA is not uniquely defined, and he pointed out that the transformation
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Fig. 1. A sketch of transformationmethod: (a) Initial spacewith a simple known field distribution; (b) deformed space characterizing the designed function.

relation for displacement proposed in [15] is possible. Therefore, different groups have come upwith different formulations
and there is no coherent theory that can link them together. Thus further efforts are still required to elucidate this ambiguity
in TA, which is the objective of this study.Wewill examine the transformationmethod in amore general context, and figure
out the constraint condition on the transformed field and material property for a given spatial mapping.

The paper is arranged as follows. In Section 2, the kinetics of a transformed variable during a mapping is assumed to
follow the deformation induced by the spatial mapping; the invariance of a physical process provides constraint conditions
necessary for deriving the transformation relation. In Section 3, application of these constraint conditions to TA is presented.
We show that the constraint conditions are not sufficient to determine completely the transformation relations, therefore
alternative ones can be proposed. In Section 4, discussions on the transformation relations of TO are provided, followed by
conclusions.

2. Constraint condition imposed by the transformation method

2.1. Interpretation of transformation method

Consider a specific physical process prescribed in an initial spaceΩ , which is governedby a systemof differential equation
F , written in a Cartesian frame as

F [x, t, C(x),u(x, t)] = 0, x ∈ Ω, (1)

where x is the spatial coordinate and t is the time; C and u represent the material property and related physical field,
respectively. They are assumed to be continuous and have continuous derivatives within Ω [23]. The physical phenomenon
described by Eq. (1) gives the relationship between C and u in every point within Ω . For a concrete physical problem, F , C
and uwill be specified together with initial and boundary conditions. In this section, we will keep our discussion as general
as possible. Suppose there is a spatial mapping under which each point x in the region Ω is mapped to a point x′

= x′(x) in
a different space Ω ′, and F will retain its form, namely,

F [x′, t, C′(x′),u′(x′, t)] = 0, x′
∈ Ω ′, (2)

then, the attached field u(x, t) and material C(x) in Ω can also be respectively point-to-point mapped to Ω ′ as

C′(x′) = TC [C(x)], u′(x′, t) = Tu[u(x, t)]. (3)

The new space Ω ′ is called the deformed space from continuum mechanics. Usually C(x) is set to be homogeneous and
isotropic, the field u(x, t) has a simple known distribution in Ω . One can choose carefully the mapping x′

= x′(x) such
that the mapped field u′(x′, t) in the deformed space follows a desired way, as illustrated schematically by a rotator in
Fig. 1. Once the function is specified by u′(x′, t), according to Eq. (2) the related material to realize this function should
be the transformed material C′(x′), which usually becomes inhomogeneous and anisotropic. According to this procedure,
the transformation method provides a visualized way to redistribute the physical field point by point, and avoids inversely
solving the governing equation to obtain the corresponding material distribution. Obviously, the transformation relations,
Eq. (3), are essential to fulfill this method.

In order to obtain Eq. (3), one usually utilizes the methods based on the mathematical interpretation of the form-
invariance between Eqs. (1) and (2). In this interpretation, the form-invariance is a pure mathematical property of Eq. (1)
or (2). One needs first to write down the governing equation in a general curvilinear coordinate system to verify whether
it has the same form as the original one. To this end, usually certain transformation relations for some physical quantities
between x and x′ have to be pre-assumed, and then the transformation relations for the other quantities are derived by the
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Fig. 2. Rigid rotation and stretch operation during a transformation at each point.

mathematical interpretation of the form-invariance. However, these pre-assumed transformation relations are not objective,
and the resulted transformation relations are closely dependent on the pre-assumed ones.

To circumvent this difficulty, an alternative method will be proposed. Instead of finding the required transformation
relation directly by verifying the invariance of governing equation, herewe assume that the transformed governing equation
is known and has the same form as the original one. According to the previous discussion, the same form of Eqs. (1) and (2)
implies the invariance of the physical process during the mapping. This invariance in fact imposes the constraint on the
transformed field u′(x′, t) and material C′(x′). If the kinetics of a transformed variable is prescribed during the mapping,
together with Eq. (2) we can derive the transformation relation without any pre-assumed transformation. In the following,
we will specify the kinetics for the transformed field andmaterial by assuming that they will follow the deformation during
the spatial mapping.

During the transformation, the material property and physical field related by Eq. (1) in the initial space are transported
to the deformed space. The transformed material and field have to be subjected to some constraints, so that they should
rebuild the same physical mechanism in the deformed space, i.e., satisfying Eq. (2). If we can establish a local Cartesian
frame at each point in the deformed space, which is uniquely determined by the mapping, the governing equation written
in the local Cartesian frame is form-invariant if we interpret a general mapping locally by an affine transformation point-
by-point [24].

2.2. Local Cartesian frames

Consider a mapping x′
= x′(x), which maps every point x in Ω unique to x′ in a new space Ω ′, as shown in Fig. 2. It is

useful to interpret x′ as another Cartesian coordinate superposed on x [15]; if the mapping is interpreted by successive local
affine transformation, then the mapping defines a deformation field on the initial space Ω , characterized by a deformation
gradient tensor A with elements Aij = ∂x′

i/∂xj. We ignore the translation part in the affine transformation because it does
not affect the physical quantities. The tensorA can be further decomposed uniquely into a positive definite symmetric tensor
and an orthogonal tensor [25]:

A = VR = RU, (4)

where R is an orthogonal tensor characterizing the rigid rotation of a point during the transformation, and V and U are the
positive definite symmetric tensors describing pure stretch operations. We separately define λi and ê′

i as the eigenvalues
and the corresponding eigenvectors of V, i.e., V = λ1ê′

1ê
′

1 +λ2ê′

2ê
′

2 +λ3ê′

3ê
′

3; thus, the eigenvectors ê
′

i form a local Cartesian
frame at each point in the deformed space Ω ′. We also define êi by ê′

i = Rêi (in fact, êi is the eigenvector of U), and êi
also forms a local Cartesian frame in the initial space Ω . êi and ê′

i can be different from the corresponding global frame
ei, as illustrated in Fig. 2. By establishing these two local Cartesian frames êi and ê′

i for the initial and deformed spaces,
respectively, we can write down the governing equation and transformation relation before and after the transformation in
êi and ê′

i , respectively.
Before proceeding further, we will discuss some properties of the established local Cartesian frames. During a mapping,

an infinitesimal element dΩ (with the frame êi attached) will first be rotated with R, and then rescaled by a factor λi in the
ê′

i direction, and finally transformed to dΩ ′ (as illustrated in Fig. 2). Therefore, during the mapping, any physical quantity
attached with the element will experience a rigid rotation operation R that rotates the physical quantity and the attached
base êi in the initial space to ê′

i in the deformed space; then, a stretch operation V rescales the physical quantity accordingly
in ê′

i , as shown in Fig. 2. The rescaling should ensure the physical quantity to rebuild the same physical mechanism as that
in the undeformed space.

To establish the differential relation between these two local Cartesian frames, consider a line element in dΩ, dx =

dxiei = dx̂iêi; during the mapping (local affine transformation), it is transformed to dx′ in dΩ ′ as

dx′
= VRdx = λidx̂iê′

i = dx̂′

iê
′

i, (5)



Author's personal copy

J. Hu et al. / Wave Motion 50 (2013) 170–179 173

leading to the following differential operation between êi and ê′

i:

∂

∂ x̂′

i
=

∂

λi∂ x̂i
. (6)

2.3. Geometrical constraints

For the givenmapping x′
= x′(x), wewill determine the transformation relations for (û′, û) aswell as (Ĉ′, Ĉ). In the initial

space, the material properties are assumed to be isotropic, the governing equation is insensitive to the frame direction and
can be written in êi as

F [x̂, t, Ĉ(x̂), û(x̂, t)] = 0, in dΩ. (7)

As we know that Ĉ and ûwill first experience a rigid rotation R and then pure stretch operation along the eigenvectors of V
to reach Ĉ′ and û′, we can symbolically write

VCR : Ĉ → Ĉ′, VuR : û → û′. (8)

In the established frame ê′

i,VC,Vu have diagonal forms, which will be determined by the form-invariance of the governing
equation during the transformation of dΩ to dΩ ′, because locally, both êi and ê′

i are Cartesian frames, and hence, we have

F [x̂′, t, Ĉ′(x̂′), û′(x̂′, t)] = 0 in dΩ ′. (9)

With the help of Eqs. (8) and (6), we can express Eq. (9) from the frame ê′

i to the frame êi, and compare directly with Eq. (7)
to determine VC,Vu.

2.4. Energy conservation constraints

Since the mapping just transports a physical mechanism from the initial space to the deformed space, no new physical
process manifests during the transformation. Therefore we can assume that at each element, there is no creation or loss of
energy during the transformation; in addition, there is no interchange between the different types of energy. If the energy
density is denoted by w = w(C,u) in the initial space, then the energy conservation leads to wdΩ = w′dΩ ′, where w′ is
the energy density in the deformed space. With the help of the relation dΩ ′

= λ1λ2λ3dΩ , we have

w(Ĉ, û) = w′(Ĉ′, û′)λ1λ2λ3. (10)

The energy conservation will provide other constraint condition for VC and Vu. In the following, we will apply this general
concept to acoustics.

3. Application to generalized acoustics

3.1. Constraint conditions for generalized acoustics

We consider a generalized acoustic wave equation in the context of pentamode materials (PMs) [17,26],

∇ · σ = ρ · ü,

σ = κ tr(S∇u)S,
(11)

where S is a general second-order tensor, u denotes the displacement vector, σ is the stress tensor, κ is the bulk modulus,
and the density ρ is assumed to have a tensor form [27]. For PM, the corresponding material tensor C = κS ⊗ S can be
realized at least theoretically [26]. When ρ = ρI, S = I, and σ = pI, the following classical acoustic wave equation can be
recovered:

∇p = ρü,

p = κ∇ · u,
(12)

where p is the acoustic pressure.
Now, we will write down the governing equation (Eq. (11)) in the local Cartesian frames êi and ê′

i , respectively. In the
initial space, the acousticwave equation is supposed to have a classical formgiven by Eq. (12). During the transformation, the
material properties ρ̂ Î, κ̂ and the physical fields p̂Î, û are transformed to ρ̂

′
, κ̂ ′ and σ̂

′
, û′, respectively, and the tensor Ŝ = Î is

transformed to Ŝ′. According to the previous analysis, there are two operations on each quantity during the transformation:
first, a rotation operation from êi to ê′

i by R, then a pure stretch operation in ê′

i . Taking the displacement as an example,
during the transformation, we have: û′

= VuRû. As the frame ê′

i is specially established, which is the principle frame of the
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stretch V, the pure stretch operation Vu on the displacement has a diagonal form in this principle frame, and we note it in
ê′

i by Vu = diag[f1, f2, f3]. For the rigid rotation operation, the vector û, together with the frame êi, are rotated to the new
local frame ê′

i . Therefore, in the local frame ê′

i , we still have Rû = [û1, û2, û3]
T. Finally, the transformed displacement in the

frame ê′

i can be written as û′
= [f1û1, f2û2, f3û3]

T. The same idea is applied for the other quantities, and finally, we have

Ŝ′
= diag[d1, d2, d3],

σ̂
′
= p̂ diag[e1, e2, e3],

û′
= [f1û1, f2û2, f3û3]

T, (13)
ρ̂

′
= ρ̂ diag[g1, g2, g3],

κ̂ ′
= κ̂h,

where di, ei, fi, gi, and h are the scaling factors on the material property and physical field; they are constant on each
transformed element as a result of the local affine transformation, and will be determined by the form-invariance of the
governing equation. To this end, we write Eq. (12) in êi as

∂ p̂
∂ x̂i

= ρ̂ ¨̂ui,

p̂ = κ̂


∂ û1

∂ x̂1
+

∂ û2

∂ x̂2
+

∂ û3

∂ x̂3


. (14)

After the mapping, the form-invariance of Eq. (11) implies that

∇ · σ̂
′
= ρ̂

′ ¨̂u
′

,

σ̂
′
= κ̂ ′tr


Ŝ′

∇û′


Ŝ′. (15)

As in frame ê′

i , the second-order tensors have diagonal forms, Eq. (15) can be written in index form without summation as

∂σ̂ ′

ii

∂ x̂′

i
= ρ̂ ′

ii
¨̂u
′

i

σ̂ ′

ii = κ̂ ′


Ŝ ′

11
∂ û′

1

∂ x̂′

1
+ Ŝ ′

22
∂ û′

2

∂ x̂′

2
+ Ŝ ′

33
∂ û′

3

∂ x̂′

3


Ŝ ′

ii. (16)

Using Eqs. (6) and (13), Eq. (16) can be further written as
ei
λi

∂ p̂
∂ x̂i

= gifiρ̂ ¨̂ui

eip̂ = hκ̂

d1f1
λ1

∂ û1

∂ x̂1
+

d2f2
λ2

∂ û2

∂ x̂2
+

d3f3
λ3

∂ û3

∂ x̂3


di. (17)

To derive Eq. (17), the following property is used: e.g., dû′

i = fidûi is employed for the increment of displacement. This
is a natural consequence of the local affine transformation, because the scaling factors are constants in any infinitesimal
element. By comparing Eq. (17) directly with Eq. (14), the following constraint conditions can be derived:

d1f1
λ1

=
d2f2
λ2

=
d3f3
λ3

, (18a)

hd2i
gi

= λ2
i . (18b)

The conservations for strain potential energy and kinetic energy lead to
3

i=1

σ̂ ′

ii
∂ û′

i

∂ x̂′

i
= p̂

3
i=1

eifi
λi

∂ ûi

∂ x̂i
=

p̂
λ1λ2λ3

3
i=1

∂ ûi

∂ x̂i
, (18c)

3
i=1

ρ̂ ′

ii
˙̂u
′2
i = ρ̂

3
i=1

gif 2i ˙̂u
2
i =

ρ̂

λ1λ2λ3

3
i=1

˙̂u
2
i . (18d)

These then complement the following two additional constraint conditions:

eifi =
λi

λ1λ2λ3
,

gif 2i =
1

λ1λ2λ3
.

(18e)
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Totally, we have 11 equations for the 13 unknown scaling variables di, ei, fi, gi, and h, therefore there is no unique solution,
and we have some degrees of freedom to choose the transformation relations differently. To illustrate this possibility, in the
following, wewill give some examples. It can also be noted that di/ei =

√
λ1λ2λ3/h in Eq. (18) indicates that the pentamode

material model is always kept during the transformation.

3.2. Acoustic transformation with a constant pressure

Let the pressure p be unchanged during the transformation, i.e., σ̂′
= p̂Î′ and Ŝ′

= Î′; therefore, we set ei = 1 and di = 1,
and then, from Eq. (18), the following unique solution for the scaling factors are found

fi =
1

λjλk
, gi =

λjλk

λi
, h = λ1λ2λ3,

i, j, k = 1, 2, 3; i ≠ j, i ≠ k, j ≠ k.
(19a)

Thus, in the frame ê′

i , the transformation relations for the material property and physical field can be expressed as

p̂′
= p̂,

û′
=

diag[λ1, λ2, λ3]

λ1λ2λ3
[û1, û2, û2]

T,

ρ̂
′
= ρ̂ diag


λ2λ3

λ1
,
λ1λ3

λ2
,
λ2λ1

λ3


, (19b)

κ̂ ′
= κ̂λ1λ2λ3,

or written in a tensor form in a global system due to objectivity of a tensor as

p′
= p,

u′
=

VRu
λ1λ2λ3

=
Au

detA
,

ρ′
= ρ

λ1λ2λ3

V2
= ρ

detA
AAT ,

κ ′
= κ detA.

(19c)

These transformation relations for p′, ρ′, and κ ′ agree with those obtained in [14,18], and that of u′ agrees with the recent
result obtained in [16] in an orthogonal system.

3.3. Acoustic transformation with a constant displacement

We now let the displacement remain unstretched, i.e., û′

i = ûi or fi = 1, and set Ŝ′
= V/ detA as proposed in [17], i.e.,

d1 = 1/(λ2λ3), d2 = 1/(λ3λ1), d3 = 1/(λ1λ2); subsequently, from Eq. (18), we can get the unique solution as

ei =
1

λjλk
, gi =

1
λ1λ2λ3

, h = λ1λ2λ3,

i, j, k = 1, 2, 3; i ≠ j, i ≠ k, j ≠ k.
(20a)

The corresponding transformation relations in the global frame are given by

σ′
=

Ap
detA

, u′
= Ru, ρ ′

=
ρ

detA
, κ ′

= κ detA. (20b)

As C′
= κ ′S′

⊗ S′, it can be noted that the transformation relations for the modulus and density given by Eqs. (19) and (20)
can be derived from each otherwith the following condition: [κ ′, ρ ′

1, ρ
′

2, ρ
′

3] ↔ [1/ρ ′, 1/C ′

1111, 1/C
′

2222, 1/C
′

3333]. This result
agrees with that proposed by Norris [17]. He also noted that the transformation relations given by Eq. (20) could prevent the
mass singularity for acoustic cloaks. However, it should be mentioned that in addition to the pressure, the transformation
relation for the displacement is also different in these two cases.

3.4. Acoustic transformation proposed by Milton et al. [15]

Milton et al. [15] propose the following transformation relation for displacement: u′
= (AT)−1u; in the case of

elastodynamic wave, this condition implies û′

i =
ûi
λi

or fi =
1
λi
, and using Ŝ′

= V2/ detA as proposed in [17], i.e.,
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d1 = λ1/(λ2λ3), d2 = λ2/(λ3λ1), d3 = λ3/(λ1λ2), Eq. (18) leads to the following unique solution:

ei =
λi

λjλk
, gi =

λi

λjλk
, h = λ1λ2λ3,

i, j, k = 1, 2, 3; i ≠ j, i ≠ k, j ≠ k.
(21a)

The corresponding transformation relations in the global frame are derived as

σ′

i = p
AAT

detA
, u′

= (AT)−1u, ρ′
= ρ

AAT

detA
, κ ′

= κ detA, (21b)

and C′
= κ ′S′

⊗ S′
=

κV2
⊗V2

detA . We noted that the density tensor ρ′ and the elasticity tensor C′ have the same transformation
relations as those presented in [15]. These confirm that the transformation relations given by Milton et al. [15] are also
admissible for a generalized acoustic transformation based on PM theory.

3.5. Acoustic transformation with one constant material property

As discussed in Section 3.1, for acoustic transformation, we have 11 constraint equations for determining 13 scaling
variables; therefore, we can propose some new transformation relations. Let us assume that the density is kept constant
during the transformation: ρ̂ ′(x′) = ρ̂(x) or gi = 1. Let us further assume that κ̂ ′

= κ̂ detA or h = λ1λ2λ3, as proposed
in [17]; then, from Eq. (18), the following unique solution can be derived:

di =


λi

λjλk

 1
2

, ei =


λi

λjλk

 1
2

, fi =


1

λ1λ2λ3

 1
2

,

i, j, k = 1, 2, 3; i ≠ j, i ≠ k, j ≠ k.

(22a)

The corresponding transformation relations in the global frame are given by

S′
=


AAT

detA

 1
2

, p′
= p


AAT

detA

 1
2

,

u′
= (detA)−

1
2 Ru, ρ ′

= ρ, κ ′
= κ detA.

(22b)

and C′
= κ ′S′

⊗ S′; thus, without summation of index, we have

C ′

iiii = λ2
i κ. (23)

Similarly, let the bulk modulus remain unchanged, κ̂ ′(x′) = κ̂(x) or hi = 1 and di = 1; then, the following acoustic
transformation with constant modulus can also be obtained:

ei =


1

λ1λ2λ3

 1
2

, fi =


λi

λjλk

 1
2

, gi =
1
λ2
i
, (24a)

or

S′
= I, κ ′

= κ, σ′
= p


1

detA

 1
2

,

u′
=


AAT

detA

 1
2

Ru, ρ′
= ρ


1

AAT


.

(24b)

The transformation relations for the modulus and density given by Eqs. (22) and (24) also have the following symmetry:
[1/ρ ′, 1/C ′

1111, 1/C
′

2222, 1/C
′

3333] ↔ [κ ′, ρ ′

1, ρ
′

2, ρ
′

3]. We should point out that among the above-mentioned transformations,
only the transformation relations given by Eqs. (19) and (24) keep the transformed medium as a fluid, and the other
transformations convert a fluid to a more complex material, called the pentamode material.

To validate the proposed ρ-unchanged transformation, in the following, we construct a two-dimensional acoustic cloak
with the transformation relations for modulus and density given by Eq. (22). For a cylindrical cloak, the ρ-unchanged
transformation given by Eq. (22) requires the principal stretches λr , λθ , λz to be unity at the outer boundary, in order
to satisfy the displacement and pressure continuity conditions [17]. Usually, the outer boundary is fixed during a spatial
deformation in constructing cloaks, and hence, λθ and λz naturally become unity at the outer boundary; however, λr at the
outer boundary depends on the transformation. The linear transformation r ′

= a + r(b − a)/b is not applicable to this ρ-
unchanged transformation, because λr = dr ′/dr = (b − a)/b ≠ 1 at the outer boundary, where a and b are the radii of the
inner and outer boundary of the cloak, respectively. In the following, the nonlinear transformation r ′

= ab2/[(a− b)r + b2]
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Fig. 3. Computational domain and simulation for a left-incident acoustic cloak based on Helmholtz equation.

Fig. 4. Simulation of the displacement field around the ρ-unchanged acoustic cloak.

proposed in [28] will be used, and at the outer boundary, λr(r = b) = (b − a)/a = 1, if b = 2a. From this transformation,
we can compute A everywhere in the cloak, and subsequently, the material distributions necessary for realizing this cloak
are given by Eqs. (22) and (23).

To validate the proposed cloak, we consider a plane acoustic wave incident on the cloak. For a plane wave, the
displacement in Eq. (12) can be expressed by a scalar u. Eliminating p in Eq. (12) gives the wave equation for the scalar
displacement, i.e., the reduced acoustic equation ∇ · (κ∇u) − ρü = 0. Thus, the same PDE mode (Helmholtz equations)
∇ · (c∇p) + ap = 0 of commercial software COMSOL Multiphysics can be used to demonstrate the cloaking effect for the
harmonic wave, where c is a tensor representing the elasticity tensor, just as themethod used in [29]. Here, we set c ′

ii = λ2
i κ

from Eq. (23) and a′
= a. As COMSOL solver requires Cartesian coordinates, it is necessary to write c in the global Cartesian

coordinate by the tensor transformation rule, i.e., c ′
xx = c ′

rr cos
2 θ + c ′

θθ sin
2 θ, c ′

xy = c ′
yx = (c ′

rr − c ′

θθ ) sin θ cos θ , and c ′
yy =

c ′
rr sin

2 θ + c ′

θθ cos
2 θ . Fig. 3 shows the computational domain for a horizontally incident wave, and a = 0.2 m, b = 0.4 m.

In the simulation, the background medium is set to be water, ρ = 1 × 103, κ = 2.18 × 109 in SI units, and the wavelength
of the incident wave is 0.35 m. The material parameters within the cloak are ρinc = ρ/5 and κinc = κ . The simulation of the
cloak constructed by the proposed ρ-unchanged transformation is shown in Fig. 4, and the simulation result confirms the
validity of the proposed transformation. The imperfection of the simulated result is believed to come from the numerical
simulation. When the Helmholtz equation is solved in the simulation, the parameter c will tend to infinity with a higher
order than the stretch λθ near the inner boundary (see Eq. (23)), therefore more refined discretization is needed with a cost
of computation time to obtain more perfect results.

4. Discussions and conclusions

The proposed method can be applied to other wave phenomena. Taking the electromagnetic wave as an example,
Maxwell’s equations in Cartesian coordinate read

∇ × E = −µḢ, ∇ × H = +εĖ. (25)

Maxwell’s equations possess a special symmetry, which indicates that the material parameters and fields should have the
same transformation, respectively, or more explicitly, ε′

= µ′ and E′
= H′, if ε = µ and E = H. This condition makes it

possible to analyze the electromagnetic transformation only by one of the equations in Eq. (25). The material parameters in
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the initial space are assumed to be isotropic, i.e., ε = εI and µ = µI. According to the method proposed in Section 2, the
transformation relations for thematerial property and physical field take the following forms in the local Cartesian frame ê′

i:

ε̂
′
= ε̂ diag[a1, a2, a3],

µ̂
′
= µ̂ diag[a1, a2, a3],

Ê′
= [b1Ê1 b2Ê2 b3Ê3]

T,

Ĥ′
= [b1Ĥ1 b2Ĥ2 b3Ĥ3]

T.

(26)

It is easy to establish the following unique solution according to the method proposed in Section 2:

ai =
λi

λjλk
, bi =

1
λi

, i, j, k = 1, 2, 3; i ≠ j, i ≠ k, j ≠ k. (27)

The corresponding transformation relations in the global frame are derived as

ε′
=

AεAT

detA
, µ′

=
AµAT

detA
, E′

= (AT)−1E, H′
= (AT)−1H. (28)

Eq. (28) is the sameas the known result in the literature. It is also shown that the transformation relations for electromagnetic
transformation are uniquely determined.

For elastic waves, it is shown that the governing equation in the deformed space should have different form from the
original one [30,31], thus the proposed local invariance assumption fails. However, the local affine transformation will lead
to high frequency approximation [32,33], which is useful in elastic ray theory [34,35]. Norris and Shuvalov [36]and Vasquez
et al. [37] also developed a comprehensive theory for elastic transformation based on the mathematical interpretation of
form-invariance.

To conclude,we developed a generalmethod to derive the transformation relations during a spatialmapping. Themethod
is based on the physical interpretation of local form-invariance, and on the kinetics of the transformed field and materials
and the energy conservation condition. No pre-assumed transformation relations are necessary. For acoustic wave, we
derived the constraint condition and found that the constraint conditions are less than the scaling variables for TA, this
provides a possibility to define transformation relations differently; it also explains the different acoustic transformations
existing in the literature. New acoustic transformations with constant density or modulus are also proposed and validated
by constructing a two-dimensional acoustic cloak.
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