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Abstract

Stress and couple stress distributions are determined analytically for a coated fiber in an infinite micropolar matrix,

loaded remotely by classical symmetric stresses. The determined stresses are then compared with those predicted by

Cauchy theory, a size dependence is predicted in the framework of micropolar theory, and when the fiber�s diameter is
much larger than the characteristic length of the matrix, the classical prediction can be recovered. The exact average

stress in a fiber for a fiber-matrix system (without interphase) is also compared with that approximately derived by the

average equivalent inclusion method (AEIM), based on the micropolar Eshelby tensor given by Cheng and He [Int. J.

Eng. Sci. 35 (7) (1997) 659], the results show that the approximate AEIM method can give an accurate prediction for the

size dependence of the average stress in a fiber. A micro–macro transition method is also proposed to determine effective

in plane moduli of a heterogeneous micropolar material, the effective shear and in plane bulk moduli of a micropolar

composite with coated fibers are derived analytically by extending Mori–Tanaka�s method to a micropolar composite,
and the effective shear and in plane bulk moduli for a two-phase fiber composite (without interphase) are also obtained

as a special case. The results show that the effective in plane bulk modulus is identical to that obtained by Cauchy

theory, however the effective shear modulus depends on fiber�s diameter, it increases with decreasing fiber�s diameter at
the same fiber volume fraction, and the classical prediction is recovered when the fiber�s diameter becomes large
compared to the matrix characteristic length.
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1. Introduction

In this paper, we are interested in the localization problem for a coated fiber in an infinite micropolar

matrix, and the effective in plane moduli of such composite, both the fiber and the interphase can be mi-
cropolar materials. The motivation of this work comes one part directly from the coating technology to

improve the strength and toughness of composite materials (Verghese, 1999; Gao and Mader, 2002),
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another part from the need to establish a rigorous micromechanical method to explain the well-observed

size effect of composite materials (Lloyd, 1994; Yang et al., 1990). For Cauchy composites, there are dif-

ferent models to predict effective properties of composites from their microscale parameters (see for ex-

ample Mura, 1982; Nemat-Nasser and Hori, 1993; Torquato, 2002; Milton, 2002). The developed analytical
methods are usually based on the Eshelby�s fundamental solution, or on the solutions for a coated or multi-
layer sphere or cylinder (generalized self-consistent method for example). Although a great success has been

achieved, the micromechanical methods developed in the framework of Cauchy theory fail to predict a size

dependence for overall properties, especially for the overall plasticity of composites (Lloyd, 1994; Yang

et al., 1990; Liu and Hu, in press).

Any material is basically heterogeneous in nature, homogenization of the material depends on length

scales in which we are interested. Consider a fundamental problem for a composite material, an inhomo-

geneity is placed into a matrix material, as shown in Fig. 1. The matrix material has its own characteristic
length due to its inner microstructure, for example, the grain size for a polycrystal material. When the size

of the inhomogeneity is much larger than the characteristic length of the matrix (Fig. 1a), in this case, the

matrix material can be homogenized as a Cauchy material. However, as shown in Fig. 1b, when the size of

the reinforced phase is comparable to the characteristic length of the matrix, nonlocal nature of the matrix

material may become important. This problem is relevant for metal matrix composites, nanocomposites. It

is widely accepted that to include this nonlocal nature of a material in a homogenized continue formulation,

high order continuum theories with inherent length scales must be assigned for the matrix material. Dif-

ferent high order theories and methods have been advanced in the literature, as early as in 1909, Cosserat
brothers proposed a continuum theory by introducing, in addition to a displacement vector, a set of di-

rectors at each material point to characterize the kinetic motion of microstructures inside of this point. This

idea has been further elaborated by Mindlin and Tiersten (1962), Toupin (1962), and especially by Eringen

(1968), the detailed results have been recently summarized in the monograph by Eringen (1999). In mi-

cropolar theory, a rotation vector is introduced at each material point as an additional degree of freedom,

and this gives rise to a couple stress, conjugated with the gradient of the rotation vector, defined as a

torsion. Due to dimensional consistency, the relation between the couple stress and the torsion brings

naturally some length scales, usually defined as material characteristic lengths. When the micro-rotation in
micropolar theory is identified as the rigid rotation of a material point, this leads to so-called couple stress

theory, as discussed by Mindlin and Tiersten (1962), and recently reformulated and extended to plasticity

by Fleck and Hutchinson (1997) for exploring the size effect due to heterogeneous plastic deformations.

Some new developments along this line can be found in the references Gao et al. (1999) and Hwang et al.

(2002). Another method for explaining the size effect from a continue point of view has been proposed and

developed by Aifantis (1984, 1987), he introduced only a high order displacement gradient in a constitutive

relation.
Fig. 1. Length scale conditions (a) the size of fiber is much larger than the characteristic length of the matrix; (b) the size of fiber is

comparable to the characteristic length of the matrix.
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Although there are lots of works devoted to the theories of a high order continuum, systematic analyses

on effective properties for a heterogeneous micropolar material are few. There are two major problems

concerning on the evaluation of overall properties for a micropolar composite: the first is a proper defi-

nition of a micro–macro transition principle; the second is the solution of some typical localization
problems. For the first problem, Forest et al. (1999, 2000) have examined different boundary conditions on

a representative volume element (RVE), and they proposed corresponding micro–macro transition meth-

ods; and for the second problem, following the idea of Eshelby, Cheng and He (1995, 1997) derived the

analytical solutions for a homogeneous micropolar material in which a cylindrical or a spherical region is

subjected to a uniform eigenstrain and a uniform eigentorsion. Their pioneer work makes the equivalent

inclusion method possible for a micropolar composite, and we will come back to this point in the following

section. For the other interesting works concerning the localization problem, the readers can refer to the

monograph by Eringen (1999). Recently Sharma and Dasgupta (2002), Liu and Hu (in press) extended
Mori–Tanaka�s method to evaluate the elastic moduli for a two-phase micropolar composite. The other
works concerning on the effective property for a micropolar composite are usually numerical in nature, for

example, Yuan and Tomita (2001) proposed a numerical method (Finite Element method) to evaluate the

effective moduli for periodic voids or fibers in a micropolar matrix; and the effective elastoplastic property

for a micropolar polycrystal material is also examined by Forest et al. (2000) through a finite element

method. Finally a shift property for the effective planar moduli of a micropolar composite was examined by

Ostoja-Starzewski and Jasiuk (1995).

The objective of this paper is to propose an analytical method for estimating effective moduli of a mi-
cropolar composite with coated fibers. The paper will be arranged as follows: the detailed solution for a

coated fiber in a micropolar matrix will be presented in Section 2, the influence of interphase properties on

stress concentration is discussed in Section 3; an approximate average equivalent inclusion method (AEIM)

based on the micropolar Eshelby tensor is utilized to determine the average stress in a fiber, and it is also

compared with the exact result, this will be presented in Section 4. In Section 5, an analytical method for

evaluating effective in plane moduli of a micropolar composite will be presented.
2. Theoretical formulation

2.1. Preliminary

We consider the following problem: a coated long fiber is embedded into an infinite matrix under a

remote uniform classical stress, as shown in Fig. 2. The materials of these three phases are centro-symmetric

and isotropic micropolar materials. A cylindrical coordinate system (r; h; z) is established with z-axis as the
longitudinal direction and r–h plan lays on the transverse plan (Fig. 2). The fiber has a radius R1, and the
coated layer has a radius R2.
In absence of body force and body moment, the governing equations for determining elastic stress and

couple stress are given by the following three sets of equations (Eringen, 1999) with a proper boundary

condition:

Kinetic relation
eij ¼ uj;i � ekij/k; ð1aÞ

kij ¼ /j;i: ð1bÞ
Balance equations of momentum and moment momentum
rij;i ¼ 0; ð2aÞ
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Fig. 2. Sketch of a three-phase model.
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mij;i þ ejikrik ¼ 0: ð2bÞ
A centro-symmetric and isotropic and constitutive relation
rij ¼ kekkdij þ ðl þ jÞeij þ ðl � jÞeji; ð3aÞ

mij ¼ akkkdij þ bkij þ ckji: ð3bÞ
where uj is a displacement vector and /j is a micro-rotation vector. rij, eij, kij and mij are respectively stress,

strain, torsion and couple stress tensors, generally, they are asymmetric. dij is the Kronecker delta, eijk is the
permutation tensor. k, l are the classical Lame constants in elasticity, j, a, b, c are the additional elastic
constants introduced in micropolar theory. The constants l, k, j have a dimension of force per unit area,
and c, b, a have a dimension of force. The following relations for the Young�s modulus, Poisson�s ratio and
bulk modulus E, m and k still hold
E ¼ lð3k þ 2lÞ
k þ l

; m ¼ k
2ðk þ lÞ ; k ¼ k þ 2

3
l: ð4Þ
These constants relate the symmetric parts of stress and strain just as a Cauchy material (Nowacki, 1986).

For the first kind problem of a plane strain condition considered in this paper, the above equations

become
eab ¼ ub;a � e3ab/3; ka3 ¼ /3;a; ð5aÞ

rab;a ¼ 0; mb3;b þ e3abrab ¼ 0; ð5bÞ

rab ¼ keffdab þ ðl þ jÞeab þ ðl � jÞeba; ma3 ¼ bka3 ¼ b/3;a: ð5cÞ
The subscript in Greek letter ranges from 1 to 2. The relation (4) still holds except that the bulk modulus
in this case becomes in plane bulk modulus, and it is defined by k ¼ k þ l. The Young�s modulus and
Poisson�s ratio should be interpreted as the in plane quantities.
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2.2. Solution of the problem

For the considered problem, all the variables are independent of z, and they are only functions of r,
h. According to Eringen (1999), the general solution can be obtained by introducing in each region the
stress and couple stress potentials Fi and Gi, (i ¼ 1, 2, 3, it refers to the fiber, interphase and matrix

respectively), and the stress and couple stress are related by the potentials in a cylindrical coordinate

system as
ri
rr ¼

1

r
oFi
or

þ 1

r2
o2Fi
oh2

� 1

r
o2Gi

oroh
þ 1

r2
oGi

oh
; ð6aÞ

ri
hh ¼

o2Fi
or2

þ 1

r
o2Gi

oroh
� 1

r2
oGi

oh
; ð6bÞ

ri
rh ¼ � 1

r
o2Fi
oroh

þ 1

r2
oFi
oh

� 1

r
oGi

or
� 1

r2
o2Gi

oh2
; ð6cÞ

ri
hr ¼ � 1

r
o2Fi
oroh

þ 1

r2
oFi
oh

þ o2Gi

or2
; ð6dÞ

mi
rz ¼

oGi

or
; ð6eÞ

mi
hz ¼

1

r
oGi

oh
: ð6fÞ
The compatibility conditions for each region now become (Eringen, 1999)
o

or
ðGi � c2ir2GiÞ ¼ �2ð1� miÞb2i

1

r
o

oh
ðr2FiÞ; ð7aÞ

1

r
o

oh
ðGi � c2ir2GiÞ ¼ 2ð1� miÞb2i

o

or
ðr2FiÞ; ð7bÞ
where
b2i ¼
bi

4li
¼ ji

ji þ li
c2i ¼ dic2i ; mi ¼

ki

2ðki þ liÞ
; ð8Þ
where di ¼ ji=ðji þ liÞ, c2i ¼ biðji þ liÞ=4liji. Constants bi, ci have a dimension of length, they can be
considered as characteristic lengths of a micropolar material.

Eqs. (7) lead to the following differential equations for the stress and couple stress potentials
r4Fi ¼ 0; ð9aÞ

r2ðGi � c2ir2GiÞ ¼ 0; ð9bÞ

where r2 is Laplacian operator.

The general solutions of equations (9) are obtained for the region i as
Fi ¼ Ai
1R

2
1 Log r þ Ai

2r
2 þ ðAi

3R
2
1 þ Ai

4r
2 þ Ai

5R
4
1r

�2 þ Ai
6R

�2
1 r4Þ cos 2h; ð10aÞ

Gi ¼ ½Ai
7R

4
1r

�2 þ Ai
8r
2 þ Ai

9R
2
1K2ðr=ciÞ þ Ai

10R
2
1I2ðr=ciÞ� sin 2h; ð10bÞ
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where IMðr=ciÞ is the modified Bessel function of the first kind of order M , KMðr=ciÞ is the modified Bessel
function of the second kind of order M , and Ai

j (the superscript i ¼ 1, 2, 3, referring to the different regions,

and j ¼ 1; 2; . . . ; 10) are the constants to be determined.
It is found that Eqs. (7) are satisfied by setting
Ai
7 ¼ 8b2i ð1� miÞR�2

1 Ai
3; ð11aÞ

Ai
8 ¼ 24b2i ð1� miÞR�2

1 Ai
6: ð11bÞ
The local stress, couple stress, displacement and micro-rotation fields are derived with the help of Eqs.

(6) and (10) and the constitutive relations for each phase, they are for the region i:
ri
rr ¼ Ai

1R
2
1r

�2 þ 2Ai
2 � 2f2Ai

3R
2
1r

�2 þ ðAi
4 þ Ai

8Þ þ 3ðAi
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2
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þ ð6r�3ci þ c�1i r�1ÞK1ðr=ciÞ� þ Ai
10R

2
1½3cir�2I0ðr=ciÞ � ð6r�3ci þ c�1i r�1ÞI1ðr=ciÞ�g cos 2h; ð12aÞ
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The displacement and micro-rotation fields are
uir ¼ � R21
2rli

Ai
1 þ
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�
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/i
z ¼

sin 2h
r2bi

fR41Ai
7 þ r4Ai

8 þ rR21½rK0ðr=ciÞ þ 2ciK1ðr=ciÞ�Ai
9 þ ½rI0ðr=ciÞ � 2ciI1ðr=ciÞ�Ai

10g: ð13cÞ
The remote boundary condition can be written as r ! 1, r3rr ¼ 1
2
ðR11 þ R22Þ þ 1

2
ðR11 � R22Þ cos 2h,

r3rh ¼ 1
2
ðR22 � R11Þ sin 2h, m3

rz ¼ 0.

These provide the following conditions ðR26 r < 1Þ
A36 ¼ A38 ¼ A310 ¼ 0; A32 ¼
1

2
ðR11 þ R22Þ; A34 ¼

1

2
ðR11 � R22Þ: ð14Þ
For the fiber ð06 r6R1Þ, due to the condition of the finite stress and couple stress, we have
A11 ¼ A13 ¼ A15 ¼ A17 ¼ A19 ¼ 0: ð15Þ
The other unknown constants can be determined from the continuity condition at the interface between

the fiber and interphase, and the interface between the interphase and matrix, respectively, which are
written as (for i ¼ 1, 2)
uirðRiÞ ¼ uiþ1r ðRiÞ; uihðRiÞ ¼ uiþ1h ðRiÞ; ri
rrðRiÞ ¼ riþ1

rr ðRiÞ;
ri
rhðRiÞ ¼ riþ1

rh ðRiÞmi
rzðRiÞ ¼ miþ1

rz ðRiÞ; /i
zðRiÞ ¼ /iþ1

z ðRiÞ:
ð16Þ
The above condition can be rewritten in a more compact form, if we note
A
1 ¼ f0;A12; 0;A14; 0;A16; 0;A18; 0;A110g

T
; ð17aÞ
A
2 ¼ fA21;A22;A23;A24;A25;A26;A27;A28;A29;A210g

T
; ð17bÞ
A
3 ¼ fA31;A32;A33;A34;A35; 0;A37; 0;A39; 0g

T
: ð17cÞ
With the help of the detailed expressions for the local fields (Eqs. (12) and (13)) and the condition (11),

the condition (16) can be written together in a compact form as (i ¼ 1, 2)
MiðRiÞA
i ¼ Miþ1ðRiÞA

iþ1
: ð18Þ
The expression for the matrix MiðrÞ is given in Appendix A. Until now, the unknown constants are de-
termined completely, so as to the local stress and couple stress fields.
3. Influence of a micropolar interphase on local stress distribution

3.1. A micropolar interphase with a classical matrix and a classical fiber

For a Cauchy material, there are many works devoted to understanding stress transfer mechanisms by a

presence of an interphase (Jasiuk and Kouider, 1993; Huang and Rokhlin, 1996; Xun et al., in press), it is

found that there are large stress gradients in this thin interphase layer. To model the response of this in-

terphase layer usually with a complex heterogeneous microstructure and under a large stress gradient, we

propose to consider it as a micropolar material, and the other phases are classical Cauchy materials. Only a
remote uniaxial load R11 6¼ 0 is examined, the material constants used are l1:l2:l3 ¼ 100:30:1, m1 ¼ 0:25,
m2 ¼ 0:35, m3 ¼ 0:4, d2 ¼ 0:4 and R2 ¼ 1:1R1.
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Fig. 3. Variation of stresses for different values of parameter g ¼ R1=c2: (a) rrr=R11 along h ¼ 0; (b) rhh=R11 along h ¼ p=2.
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The variation of stress component rrr=R11 along h ¼ 0 due to the presence of an interphase is shown in

Fig. 3a for different parameters g ¼ R1=c2, the variation of stress component rhh=R11 along h ¼ p=2 is also
illustrated in Fig. 3b. In the above computations, g ! 1 corresponds to a classical interphase (a Cauchy

material). It is found that the micropolar effect of this thin interphase layer has an important influence on

the stress distribution in the interphase layer and in the fiber. For example, the fiber with a small diameter
supports more average radial stress along h ¼ 0 compared to the large one, as indicated in Fig. 3a.
3.2. A micropolar interphase with a micropolar matrix and a micropolar fiber

In this section, the stress concentration factor for a coated fiber in an infinite matrix under a uniaxial

load will be estimated, we are only illustrated the cases where the fiber is rigid or void, and the interphase

and the matrix are micropolar materials. The material constants used in the computation are: m2 ¼ 0:25,
m3 ¼ 0:35, d2 ¼ 0:3, d3 ¼ 0:2, R2 ¼ 1:1R1 and c2 ¼ c3. The ratio of the shear modulus of the interphase to
that of the matrix will be specified when necessary. We have checked that when the interphase layer
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vanishes or takes the same material constants as those for the fiber or the matrix, the results given by

Weitsman (1966) can be recovered.

Firstly, we examine the case of a rigid fiber and analyze the influence of interphase properties on the

stress concentration factor, defined by K ¼ rhh=R11 along the line h ¼ p=2 at r ¼ R1 from the interphase.
The variations of the stress concentration factor as a function of parameter g ¼ R1=c2 are shown in Fig. 4
for l2:l3¼ 13.0 and l2:l3¼ 0.13, corresponding roughly to a hard and soft interphase respectively. The
stress concentration factors for the corresponding Cauchy material are also included for a comparison. It is

found that when the fiber�s diameter is large (large g ¼ R1=c2 value), the prediction based on micropolar
theory coincides with that predicted by Cauchy theory, and the size dependence of the concentration factor

on the fiber�s diameter can be neglected for the both hard and soft interphases. However when the fiber�s
diameter approaches to the characteristic length of the interphase (c2), the prediction on the stress con-
centration factor by micropolar theory deviates significantly from that predicted by the classical method.
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The stress concentration due to a coated hole is also examined, and the results are shown in Fig. 5. It is

seen that the region dominated by void size is sharply reduced compared to the case of a rigid fiber. When

the void size approaches to the characteristic length of the interphase (c2), the stress concentration factor is
significantly reduced for the examined hard interphase. It is also found that for a void with a hard inter-
phase, the stress concentration factors estimated by both micropolar and Cauchy theories are high, this

large stress concentration can be very detrimental for a class of materials such as hollow glass cylinder

(sphere) reinforced polymers (Huang and Gibson, 1993), this large stress concentration in the glass shell can

trigger early damage of the hollow glass cylinders (spheres). This high stress concentration can be reduced

by decreasing the size of hollow glass cylinder.
4. Comparison with average equivalent inclusion method and exact relation

In the following, we consider a fiber-matrix system (without interphase), the fiber is a Cauchy material

and the matrix is a micropolar one. For a Cauchy material, Eshelby derived the solution for a homogeneous

material in which an ellipsoidal region is subjected to a uniform eigenstrain. Eshelby�s result is widely used
to determine the stress in an ellipsoidal inhomogeneity, and to compute the effective modulus of composite

materials, and this is usually called equivalent inclusion method (Mura, 1982). Recently Cheng and He

(1995, 1997) obtained the solution for a homogeneous micropolar material in which a cylindrical or a

spherical region is subjected to a uniform eigenstrain and a uniform eigentorsion. According to Cheng and
He (1995, 1997), the resulted strain and torsion in a cylindrical region subjected to a uniform eigenstrain eTab

and eigentorsion kTab can be expressed by
eabðxÞ ¼ Kabk1ðxÞeTk1 þ Labk1ðxÞkTk1; ð19aÞ

ka3ðxÞ ¼ K̂Ka3k3ðxÞeTk3 þ L̂La3k3ðxÞkTk3; ð19bÞ

where the tensors Kabk1, Labk1, K̂Ka3k3 and L̂La3k3 are called the micropolar Eshelby tensors, firstly derived by

Cheng and He (1997).

The major difference from a Cauchy material is that the resulted stress and couple stress in a circular

region are not uniform even for a uniform eigenstrain and a uniform eigentorsion. This makes the
equivalent inclusion method widely used for a Cauchy composite difficult to be applied exactly for a

micropolar material. For example, a cylindrical inhomogeneity in an infinite micropolar matrix, its effect

on stress and couple stress distributions cannot be simulated by the same form inclusion with uniform

eigenstrain and eigentorsion, rather with some non-uniform eigenstrain and eigentorsion.

With this limitation in mind, Sharma and Dasgupta (2002), Liu and Hu (in press) have postulated that

the equivalent inclusion method could be applied in an average sense for a micropolar material, and it is

called, in the following, an average equivalent inclusion method (AEIM), which is usually utilized for

evaluating the average stress for a debonding particle or a reinforced phase of non ellipsoidal form in the
case of Cauchy composites. For any remote uniform stress and couple stress Rab, Mab, they are related to a

strain and a torsion by Rab ¼ C3
abk1Ek1, Ma3 ¼ D3

a3k3Kk3, and C3
abk1, D

3
a3k3 are the in plane modulus tensors for

the matrix material. Following the same idea as in a Cauchy composite, the average stress and couple stress

in the fiber can be evaluated from the following equations for a micropolar material, here for completeness,

the fiber is also considered to be a micropolar material characterized by its in plane moduli C1
abk1;D

1
a3k3

respectively:
hrabi1 ¼ Rab þ C3
abk1ðhek1i1 � eTk1Þ; ð20aÞ

hma3i1 ¼ Ma3 þ D3
a3k3ðhkk3i1 � kTk3Þ; ð20bÞ
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heabðxÞi1 ¼ Eab þ hKabk1ðxÞi1eTk1 þ hLabk1ðxÞi1kTk1; ð21aÞ

hka3ðxÞi1 ¼ Ka3 þ hK̂Ka3k3ðxÞi1eTk3 þ hL̂La3k3ðxÞi1kTk3; ð21bÞ

hrabi1 ¼ C1
abk1hek1i1; ð22aÞ

hma3i1 ¼ D1
a3k3hkk3i1: ð22bÞ
h�i1 means the average of the said quantity over the fiber region, superscript 1, and 3 refer to the quantity
associated with the fiber and the matrix respectively. For a spherical inhomogeneity, and a centro-sym-

metric and isotropic matrix as shown by Liu and Hu (in press), and for a circular cylinder, we have also

shown that the following properties hold
hLabk1ðxÞi1 ¼ hK̂Ka3k3ðxÞi1 ¼ 0: ð23Þ

These imply, in an average sense, that a uniform eigenstrain produces only an average strain, and a

uniform eigentorsion leads only to an average torsion, they are uncoupled for a circular and spherical
inhomogeneities.

For a circular fiber, after some lengthy mathematical manipulation, very simple expressions of the ave-

rage micropolar Eshelby tensors are derived as
hKabk1ðxÞi1 ¼ T1dabdk1 þ ðT2 þ T3Þdakdb1 þ ðT2 � T3Þda1dbk; ð24aÞ

hL̂La3k3ðxÞi1 ¼ Q33dak; ð24bÞ

where
T1 ¼
k3 � l3

4ðk3 þ 2l3Þ
þ j3
2ðj3 þ l3Þ

I1ðR1=gÞK1ðR1=gÞ; ð25aÞ

T2 ¼
k3 þ 3l3
4ðk3 þ 2l3Þ

� j3
2ðj3 þ l3Þ

I1ðR1=gÞK1ðR1=gÞ; ð25bÞ

T3 ¼
4j3 þ l3
2l3

� 2ð2j3 þ l3Þ
2

lðj3 þ l3Þ
I1ðR1=gÞK1ðR1=gÞ; ð25cÞ

Q33 ¼
b3ðj3 þ l3Þ
4g2j3l3

I1ðR1=gÞK1ðR1=gÞ ð25dÞ
and g2 ¼ ðl3 þ j3Þb3=4l3j3.
The above formulations are valid for the case where both the matrix and fiber are micropolar materials.

Now, we assume the fiber is a Cauchy material, and the matrix is a micropolar one, characterizing re-
spectively by
C1
abk1 ¼ k1dabdk1 þ l1ðdakdb1 þ da1dbkÞ; ð26aÞ

C3
abk1 ¼ k3dabdk1 þ ðl3 þ j3Þdakdb1 þ ðl3 � j3Þda1dbk: ð26bÞ
Any isotropic fourth order tensor Habk1 can be always written as a sum of a symmetric and anti-sym-

metric parts as
Habk1 ¼ h1dabdk1 þ ðh2 þ h3Þdakdb1 þ ðh2 � h3Þda1dbk ¼ Hs
abk1 þ Ha

abk1; ð27Þ
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where
Hs
abk1 ¼

1

2
ðHabk1 þ HabkcÞ ¼ h1dabdc1 þ h2ðdakdb1 þ da1dbkÞ; ð28aÞ
Ha
abk1 ¼

1

2
ðHabk1 � HabkcÞ ¼ h3ðdakdb1 � da1dbkÞ: ð28bÞ
The advantage of separating a fourth order isotropic tensor into its symmetric and anti-symmetric parts

can be explained as follows: since the effect of the eigenstrain and eigentorsion is uncoupled when only a

remote uniform symmetric stress (without couple stress) is applied, the average stress in a circular inho-

mogeneity can be obtained by using the relations for the average stress and strain in Eqs. (20)–(22). Now
further split these relations of the average stress and strain into symmetric and anti-symmetric parts, for the

symmetric part, we can follow exactly the same method as the classical Eshelby�s equivalent inclusion
method just replacing the Eshelby tensor by the corresponding micropolar one. If the remote applied

stresses are symmetric, the resulted average stresses in a fiber are also symmetric, and the average anti-

symmetric stress and the couple stress are zero. So following the classical Eshelby�s method (Mura, 1982;
Nemat-Nasser and Hori, 1993). For any remote uniform symmetric stress RðabÞ, subscript ( ) means a

symmetrization operator for the indices inside, this stress can be further separated into its deviatoric and

spherical parts as RðabÞ ¼ Sab þ 1
2
Rccdab. We also separate the symmetric part rðabÞ of the local stress rab into

its deviatoric and spherical parts rðabÞ ¼ sab þ 1
2
rccdab, so the average stress in the fiber

hrabi1 ¼ hrðabÞi1 ¼ hsabi1 þ 1
2
hrcci1dab can be related to the remote applied stress RðabÞ by
hsabi1 ¼
1

l3=l1 þ ð1� l3=l1ÞhKs
1212i1

Sab; ð29aÞ
hrcci1 ¼
1

k3=k1 þ ð1� k3=k1ÞhKs
aabbi1

Rcc: ð29bÞ
where hKS
1212i1, hKS

aabbi1 are the components of the symmetric part of average Eshelby tensor, they are
hKS
1212i1 ¼ T2 ¼

3l3 þ k3
4ð2l3 þ k3Þ

� j3
2ðl3 þ j3Þ

I1ðR1=gÞK1ðR1=gÞ; ð30aÞ
hKS
aabbi1 ¼ 4ðT1 þ T2Þ ¼

2ðl3 þ k3Þ
2l3 þ k3

: ð30bÞ
It is easy to check that when fiber�s diameter tends to infinity, Eqs. (29) and (30) reduce to the corre-
sponding results for a Cauchy material.
The average stress and couple stress in a fiber determined by the exact method (presented in Section 2)

will be given in Section 5 for a coated fiber, and the average stress in the fiber for a fiber-matrix system can

be obtained as a special case. The main results are that the average couple stress and anti-symmetric stress

are zero in a fiber, and only average symmetric stresses are present if only a remote uniform symmetric

stress is prescribed. In the following, we will compare the prediction by the approximate equivalent in-

clusion method (Eq. (29)) with that obtained by the exact method (Sections 2 and 5), only uniaxial loading

R11 6¼ 0 is considered. Fig. 6a and b shows the average stresses in a fiber predicted by the two methods as a

function of parameter g ¼ R1=c3 for a hard and soft fiber respectively. In the computation, we take
m1 ¼ 1=3, m3 ¼ 1=4, d3 ¼ 0:3. The ratio of the shear modulus of the fiber and the matrix will be specified in
the figure.
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As shown in Fig. 6, the prediction on the average stress in the fiber based on the approximate average

equivalent method agrees well with that obtained from the exact solution, the size dependence of the

average fiber stress can be predicted correctly by AEIM method.
5. Effective in plane moduli of a micropolar composite

5.1. Micro–macro transition principle

With the determined local stress presented in Section 2, it is of interest to examine the effective in plane

moduli of a micropolar composite. We are only interested in the classical modulus defined between the

average symmetric stress and strain, a micro–macro transition principle corresponding to this loading

condition will be briefly presented in the following for a two-dimensional case. We are interested in the case

where the size of RVE is sufficiently small compared to structural size, so that the macroscopic stress

gradient can be neglected on the boundary of RVE. This means only classical loading condition is pre-
scribed on the boundary of RVE (oRVE) such that
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ua ¼ EðabÞxb /3 ¼ 0: ð31Þ
Here EðabÞ is a constant and symmetric tensor over RVE, xb is a coordinate. If one is interested in the full

complete moduli of the micropolar composite, a more general loading condition must be examined. For

example, in addition to the affine displacement boundary condition, an affine micro-rotation condition

must be also prescribed on the boundary. The full effective moduli of a micropolar composite can be

obtained by the solution of such boundary value problem and a proper homogenization technique. This at

present can only be analyzed by a numerical technique, since the average couple stress is not a simple

summation of local couple stress, the contribution of local stresses to the overall moment must be included.

The homogenization of this genre is relevant for small scale structures, for example, thin films, where the
size of RVE is comparable to the structural size, and this is out of the scope of this paper.

Under the boundary condition (31), for any statically balanced local stresses (rab;ma3) and geometrically

compatible local strain fields (eab; ka3), the volume average of the strain energy of RVE is
hrabeab þ ma3ka3i ¼ hrabðub;a � e3ab/3Þi þ hma3/3;ai ¼
1

V

Z
oRVE

rabubna dS þ 1

V

Z
oRVE

ma3/3na dS

¼ EðcbÞ
1

V

Z
oRVE

rabxcna dS ¼ EðcbÞhrcbi ¼ EðabÞhrðabÞi: ð32Þ
On the other hand
heðabÞi ¼ hðeab þ ebaÞ=2i ¼ hðua;b þ ub;aÞ=2i ¼ EðabÞ ð33Þ
h�i means the average of the said quantity over RVE.
If a stress boundary condition is applied on the boundary of RVE such that
rabna ¼ RðabÞna; ma3na ¼ 0; ð34Þ
where na is the outer normal of the boundary of RVE.
The energy equivalence (Eq. (32)) now can be written as
hrabeab þ ma3ka3i ¼ RðabÞheðabÞi ð35Þ
and
hrðabÞi ¼ RðabÞ: ð36Þ
So we can define the classical effective in plane modulus tensor Cabc1 or compliance tensor Sabc1 for a

micropolar composite by
hrabeab þ ma3ka3i ¼ EðabÞCabc1Eðc1Þ ¼ RðabÞSabc1Rðc1Þ: ð37Þ
In order to determine the effective modulus tensor Cabc1, we will apply a displacement boundary con-

dition (31) and determine the average symmetric stress, and then the relation between average symmetric

stress hrðabÞi and the average symmetric strain EðabÞ provides the classical effective in plane moduli of a

micropolar composite.

5.2. Effective in plane moduli of a micropolar fiber composite

5.2.1. Effective moduli determined by AEIM method for a two-phase fiber composite

Effective in plane moduli for a composite with classical fibers (without interphase) and a micropolar

matrix will be estimated by the approximate equivalent inclusion method. As shown in Section 4, the

average stress and couple stress in a fiber are uncoupled for a remote uniform symmetric stress, we can
follow exactly the same method as for a Cauchy composite, except that the Eshelby tensor must be replaced
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by the new one given by Eq. (30). In this paper, the Mori–Tanaka�s method (see for example, Hu and Weng,
2000a,b) will be utilized to derive the relation between the average symmetric stress and strain of RVE,

finally the effective shear and in plane bulk moduli of a micropolar fiber composite are respectively
lc ¼ l3 1

�
þ f1
2ð1� f ÞhKS

1212i1 þ ½l3=ðl1 � l3Þ�

�
; ð38aÞ

kc ¼ k3 1

(
þ f1
½ð1� f ÞhKS

aabbi1=2� þ ½k3=ðk1 � k3Þ�

)
: ð38bÞ
where f1 is the volume fraction of fibers.
Since hKS

aabbi1 ¼ 2ðl3 þ k3Þ=ð2l3 þ k3Þ, which is identical to the spherical part of the classical Eshelby
tensor for a circular fiber in a plane strain condition, so the predicted effective in plane bulk modulus is the

same as that for the corresponding Cauchy composite. However the effective shear modulus depends on

fiber�s size through the component of the average micropolar Eshelby tensor hKS
1212i1, which is given by Eq.

(30a), with a classical term (Cauchy medium) and a term related to the micropolar effect of the matrix.

5.2.2. Effective in plane moduli determined with the exact localization relation

As shown in Section 4 for the average equivalent inclusion method, a single circular fiber embedded in an

infinite micropolar matrix under a remote constant stress and couple stress, the average stress in the fiber is

only related to the applied remote stress, and the remote couple stress produces only an average couple

stress in the fiber. Encouraged by the results obtained by AEIM method, here we assume the remote couple

stress produces only an average couple stress in the fiber. The localization relation of Mori–Tanaka�s
method is obtained by embedding a fiber (or coated fiber) into the matrix material under yet unknown

average stress and couple stress of the matrix. With the previous assumption (effect of average stress and
couple stress is uncoupled in the fiber), only the relations of the average stress and strain is considered if we

are concerned with the classical effective in plane modulus of the composite. In the following, the average

stresses in the fiber and interphase will be evaluated for a remote constant and symmetric stress.

(i) hydrostatic loading

Now let the remote stresses be R11 ¼ R22 ¼ R, it is shown from the results presented in Section 2 that the

average stresses in the fiber and in the interphase can be expressed as
hr11ii ¼ 2Ai
2 ¼ siR;

hr22ii ¼ hr11ii; hr12ii ¼ hr21ii ¼ 0; hm13i2 ¼ hm23i2 ¼ 0;
ð39Þ
where i ranges from 1 to 2, referring respectively to the fiber and the interphase. It is found that the average

couple stresses in the fiber and the interphase regions are zero.

(ii) shear loading

The following remote loading condition R11 ¼ �R22 is applied, with the help of the solution given

in Sections 2 and 3, and averaging the stress and couple stress over the fiber and the interphase regions,

after a lengthy mathematical manipulation, we get finally the average stress and couple stress in the classical

fiber
hr11i1 ¼ �ð2A14 þ 2A18 þ 3A16Þ � I1ðR1=c1ÞR1A110=2c1 ¼ p1R11;

hr22i1 ¼ hr22i1; hr12i1 ¼ hr21i1 ¼ 0:
ð40Þ
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The average stress and couple stress of the interphase are
hr11i2 ¼ �½2A24 þ 3ð1þ t2ÞA26 þ 2A28� �
R1

2c2ðt2 � 1Þ f½�K1ðR1=c2Þ þ tK1ðR1t=c2Þ�A29
þ ½I1ðR1=c2Þ � tI1ðR1t=c2Þ�A210g

¼ p2R11;

hr22i2 ¼ hr11i2; hr12i2 ¼ hr21i2 ¼ 0; hm13i2 ¼ hm23i2 ¼ 0; ð41Þ

where t ¼ R2=R1.

So under a remote constant pure shear stress, the average stress in the central fiber and the external layer
are also of pure shear. For a finite concentration of coated fibers, Mori–Tanaka�s mean field theory is
utilized to consider their interactions. Now embed one single coated fiber into a micropolar matrix under a

remote unknown matrix stress hrðabÞi3 (we do not consider the average couple stress of the matrix, since it
contributes nothing on average to the stress in the fiber and the interphase), h�i3 means the volume average
of the said quantity over the matrix, the average stresses in a fiber and in an interphase can be evaluated

with the method described previously.

With the help of the following homogenization relations
RðabÞ ¼ hrðabÞi ¼ ð1� f1 � f2ÞhrðabÞi3 þ f1hrðabÞi1 þ f2hrðabÞi2; ð42aÞ

heðabÞi ¼ ð1� f1 � f2ÞheðabÞi3 þ f1heðabÞi1 þ f2heðabÞi2 ð42bÞ
and hrðabÞi3 ¼ C3s
abk1heðk1Þi3, where C3s

abk1 is the symmetric part of the modulus tensor C3
abk1of the matrix

material. We can eliminate the unknown average matrix stress hrðabÞi3, then the relation between RðabÞ and

heðabÞi gives the classical symmetric in plane modulus tensor for a micropolar composite, the final results are
for the effective shear and in plane bulk moduli
lc ¼
f1p1 þ f2p2 þ ð1� f1 � f2Þ
f1

p1
l1
þ f2

p2
l2
þ ð1� f1 � f2Þ 1

l3

; ð43aÞ

kc ¼
f1s1 þ f2s2 þ ð1� f1 � f2Þ
f1

s1
k1
þ f2

s2
k2
þ ð1� f1 � f2Þ 1

k3

; ð43bÞ
where f1, f2 are the volume fractions of fibers and interphase respectively. The relations (43) have the same
form as the effective shear and in plane bulk moduli for a composite with a classical matrix and coated

fibers estimated by Mori–Tanaka�s method (Hu, 1997), however the stress concentration coefficients

p1; p2; s1; s2 must be determined by the corresponding material model.
Now we will firstly examine a two-phase composite (without interphase), the material constants used in

the computation are: l1:l3¼ 6.4, m1 ¼ 1=3, m3 ¼ 1=4 and d3 ¼ 0:3.
The influence of fiber�s diameter on the effective shear modulus for a two-phase fiber composite (without

interphase) is presented in Fig. 7 as a function of parameter g ¼ R1=c3 for different volume fractions of
fibers. The predictions based on AEIM method and on Cauchy theory are also included for the compar-

ison.

Compared to the classical theory in which no scale effect is present, the effective shear modulus predicted

by micropolar theory depends on fiber�s diameter, it coincides with that predicted by Cauchy theory for
large g (large fiber�s diameter), however when the fiber�s diameter is comparable to the matrix characteristic
length (characterized by c3), the prediction based on micropolar theory deviates rapidly from that predicted
by Cauchy theory. The predictions on the effective shear modulus by AEIM method and by the exact

localization relation agree well with each other.
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In the presence of an interphase layer, only the comparison with the classical prediction is shown in Fig.

8 as a function of parameter g ¼ R1=c2 for different volume fractions of fibers. The material constants used
for the computation are: l1:l2:l3¼ 84:13:1, m1 ¼ 0:25, m2 ¼ 0:35, m3 ¼ 0:4, R2 ¼ 1:1R1, d2 ¼ 0:3, d3 ¼ 0:2
and further we assume c2 ¼ c3.
As shown in Fig. 8, the size dependence of the effective shear modulus of a composite with coated fibers

is the same as that for a two-phase fiber composite (without interphase), micropolar theory predicts a sharp

increase of the effective shear modulus when the fiber�s diameter is comparable to the material�s charac-
teristic length (c2 ¼ c3), and the classical theory is scale independent. Finally for the effective in plane bulk
modulus, we find that the prediction based on micropolar theory is identical to that predicted by Cauchy

theory for both fiber-matrix system and fiber, interphase and matrix system. This can be expected, since in

micropolar theory, only rigid rotation is considered for the microstructure, the dilatation effect of the

microstructure is not included. Finally it should be mentioned that the determination of the material
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constants for a micropolar material still remains as a challenge, the different techniques and methods can be

found in the review given by Lake (1995).
6. Conclusions

We have therefore proposed an analytical method to evaluate the local stress and couple stress for a

coated fiber in a micropolar matrix under a remote constant and symmetric stress. Compared to the

classical prediction for a Cauchy material, the micropolar effect of the interphase has an important in-

fluence on the stress distributions in the interphase region and in the fiber. The determined average stress in

the fiber for a two-phase composite (without interphase) is also compared to that obtained by the ap-

proximate average equivalent inclusion method, a good agreement is found for these two methods, so the
approximate AEIM method can be used to evaluate the average stress in a fiber and to construct the ef-

fective moduli of a micropolar composite. A micro–macro transition method is also proposed, the classical

effective in plane moduli of a micropolar composite, relating the average symmetric stress and strain of

RVE, are determined analytically. It is found that the effective in plane bulk modulus is identical to that

determined by Cauchy theory, however the effective shear modulus depends on the fiber�s diameter, for
large fiber�s diameter the effective shear modulus predicted by micropolar theory coincides with that pre-
dicted by Cauchy theory, as required.
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Appendix A

The expression for the matrix MiðrÞ
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