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Effective dynamic properties of acoustic metamaterials made of multilayered flexible thin-plates

with periodically attached mass-spring resonators are studied. By using the transfer matrix

method, the thin-plate acoustic metamaterial under the plane wave incidence is characterized by a

homogeneous effective medium with anisotropic mass density. An approximate analytic expression

of effective mass density is derived for a single-layer metamaterial in the normally incident case,

and it is shown that the effective mass density can follow either Lorentz or Drude medium models.

For the obliquely incident case, it is found that effective mass density is dependent on the lateral

wave number of incident waves. Such spatial dispersion comes from the coincidence effect between

the incident acoustic wave and flexural wave in the thin plate, and it occurs at much lower

frequencies than that for a uniform plate without resonators. Based on the observed spatial dispersion,

an acoustic device made of thin-plate metamaterials is designed for frequency-controlled acoustic

directive radiation in the low-frequency regime. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4868400]

PACS number(s): 43.40.Dx, 43.20.Tb, 43.20.Ks [ANN] Pages: 1844–1852

I. INTRODUCTION

Acoustic metamaterials (MMs) have been attracting

increasing interest in recent years due to their anomalous

physical properties1 and potential applications to low-

frequency noise isolation,2,3 sub-diffraction-limited acoustic

imaging,4,5 acoustic cloaking,6,7 etc. The early work on

acoustic metamaterials is focused on bulk MMs (Refs. 1, 8,

and 9) which typically consist of hard cores surrounded by

soft coatings and embedded in a relatively rigid matrix.

However, in practical applications, there is a strong demand

for designing lightweight and thin-layer MMs for low-

frequency sound isolation10 and absorption.11 Recently, a

two-dimensional membrane-type MM was developed by

placing mass-weighted membranes as solid inclusions in the

air.2 In addition to the lightweight nature, the membrane-

type MMs can be characterized by an effectively homogene-

ous media with trivial effective shear resistance, thus making

them more preferable for acoustic wave control.

In contrast to membrane-type MMs, thin-plate MMs use

a mass-attached thin plate instead of a membrane. Therefore,

more rich phenomena can be expected due to the bending

resistance of the plate. Thin-plate structures are widely used

due to their high static stiffness and stiffness-to-weight ratio.

They are usually stiffened or corrugated in practical applica-

tions. Sound properties can be improved in mid or high

frequencies, but not for low frequencies.12 To circumvent

this problem, a thin plate is more often incorporated with

local resonant units, forming a thin-plate MM. Hsu and

Wu,13 and Xiao et al.14 suggested a thin epoxy plate contain-

ing a periodic array of lead discs hemmed around by rubber.

Wu et al.,15 Pennec et al.,16 and Oudich et al.17 reported a

thin plate deposited with a square lattice of cylindrical stubs.

A microstructure design of anisotropic mass density is also

investigated for an elastic metamaterial numerically and

experimentally.18 The low-frequency band gap19,20 of Lamb

modes can be obtained in these plate structures because the

locally resonant mechanism is similar to that of bulk MMs.

Although the correlation between the bandgap effect and

structural parameters has been extensively studied, little

research has focused on acoustic wave interaction with thin-

plate MMs. Recently, Xiao et al.21 presented an initial study

of low-frequency sound insulation by metamaterial-based

thin plates. In view of the application for low-frequency

acoustic wave manipulation, the acoustic wave interaction

with thin-plate MMs should be studied more thoroughly.

This work will study the low-frequency acoustic prop-

erty of thin-plate MMs using an effective medium approach.

In our analytic model, the locally resonant units are repre-

sented by mass-spring resonators that are attached to a thin

plate. Then analytic solutions are derived for plane acoustic

waves incident on thin-plate MMs at arbitrary angles, as will

be presented in Sec. II. The transfer matrix method used

for retrieving effective material parameters is introduced

in Sec. III, and an approximate expression of effective mass
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density is derived for a single-layer MM under normally

incident cases. Section IV shows the results of effective

dynamic properties of thin-plate MMs. It is found that nega-

tive effective mass can be achieved by either the mass-

spring resonator or the resonant vibration of the thin plate.

For oblique incident waves, thin-plate structures are modeled

as MMs with anisotropic mass density, and effective mass is

dependent on the lateral wave number of incident waves.

Such spatial dispersion effects can be employed to realize

frequency-controlled acoustic directive radiation, as will be

demonstrated in Sec. V.

II. THEORETICAL FORMULATION

The studied model is shown in Fig. 1. It is composed of

parallel-stacked thin plates with a separation d, and each

plate is attached with mass-spring resonators with period L,

where the weight of the mass is m1 and the spring coefficient

is k1. A plane acoustic wave is incident on the plate structure

with an incident angle h. The background medium is the air

with mass density q0 and sound velocity c0.

With the Kirchhoff plate theory, the bending wave equa-

tion of a single plate with resonators is written in terms of

the transverse displacement u as12

D
@4u

@y4
þqh

@2u

@t2
�
Xþ1

n¼�1
Fdðy�nLÞ�q0

@Ul

@t
�@Ur

@t

� �
¼0;

(1)

where the flexural stiffness of the plate is D ¼ Eh3=ð12ð1��2ÞÞ
with Young’s modulus E, Poisson’s ratio �, thickness h, and

mass density q. The third term in Eq. (1) is contributed from

the mass-spring resonators, and the concentrated force F is

given by

F ¼ k1ðumass � uÞ; (2)

where umass is the displacement of the attached mass. The

fourth term is acoustic loading from the air with Ul and Ur

representing, respectively, the velocity potentials at the left

and right surfaces of the plate. The particle velocity v is

related to the potential U by v ¼ �rU.

In the time-harmonic case, the transverse displacement

ui of the ith plate can be expressed as a series of space har-

monics, due to the periodic arrangement of mass-spring

resonators22

uiðy; tÞ ¼
Xþ1

n¼�1
Ai

ne�j kyþ2np=Lð Þyejxt; (3)

where Ai
n is the complex amplitude of the nth-order flexural

mode for the ith plate. The equation of harmonic-wave motion

of the resonator is given by �m1x2umass ¼ k1ðui � umassÞ,
thus the concentrated force in Eq. (2) is rewritten as

Fi ¼
k1x2

x2
1 � x2

uiðnL; tÞ; (4)

with x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
.

Acoustic fields adjacent to the plates are also expected

to be spatially periodic, then the velocity potentials in each

region of the air are expressed as

Us ¼
Xþ1

n¼�1
Bsþ

n e�j kxnxþ kyþ2np=Lð Þy½ �ejxt

þ
Xþ1

n¼�1
Bs�

n e�j �kxnxþ kyþ2np=Lð Þy½ �ejxt;

s ¼ 1; 2;…;N þ 1; (5)

where B1þ
n ¼ 1 for incident waves, B Nþ1ð Þ�

n ¼ 0 due to non-

reflecting waves in the transmission region (s ¼ N þ 1), and

Bsþ
n and Bs�

n are unknown complex amplitudes of the for-

ward and backward acoustic waves in the sth region of the

air. kxn is given by

kxn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � ky þ 2np=L
� �2

q
; k0 � ky þ 2np=L;

�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ky þ 2np=L
� �2 � k2

0

q
; k0 < ky þ 2np=L;

8>><
>>:

(6)

with k0 ¼ x=c0.

At the boundaries between the plate and air, the continu-

ous condition of the normal velocities results in

� @U
@x
¼ @u

@t
: (7)

By substitution of Eqs. (3) and (5) into Eq. (7), Bsþ
n and

Bs�
n can be expressed in terms of Ai

n by

B1�
n ¼

�xA1
n

kxn
þ 1 ðn ¼ 0Þ;

�xA1
n

kxn
ðn 6¼ 0Þ;

8>>><
>>>:

(8a)

Bsþ
n ¼

ejkxnðdþhÞð�1þsÞxðejdkxn As�1
n �As

nÞ
ð�1þ e2jdkxnÞkxn

; s¼ 2;3;…;N;

(8b)

Bs�
n ¼

e�jkxnðdð�2þsÞþhð�1þsÞÞxðAs�1
n � ejdkxn As

nÞ
ð�1þ e2jdkxnÞkxn

;

s ¼ 2; 3;…;N; (8c)

BðNþ1Þþ
n ¼ xejkxnðNhþðN�1ÞdÞAN

n

kxn
: (8d)

The unknown coefficients Ai
n can be solved from system

equations that are derived by use of the virtual workFIG. 1. The model of the thin-plate MM.
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principle.12,22 The virtual work principle states that the sum

of the work contributed by all elements of the system must

be equal to zero whenever the system undergoes the follow-

ing virtual displacement:

dui ¼ dAi
ne�jðkyþ2np=LÞyejxt: (9)

The virtual work for the unit cell depicted in Fig. 1 is

expressed as

dP ¼ dPP þ dPF þ dPR; (10)

where dPP, dPF, and dPR are the virtual work done by elas-

tic and inertial forces of the plates, acoustic loading, and the

concentrated force by the mass-spring resonator, respec-

tively, and given by

dPP ¼
ðL=2

�L=2

D
@4ui

@y4
þ qh

@2ui

@t2

 !
d~ui; (11a)

dPF ¼
ðL=2

�L=2

�jxq0ðUi � Uiþ1Þð Þd~ui; (11b)

dPR ¼ �Fd~ui; (11c)

where d~ui is the complex conjugate of the virtual displacement

dui given in Eq. (9). According to the virtual work principle

dP ¼ 0, the following system equations can be obtained:

D kyþ
2np
L

� �4

�qhx2þ 2je2jdkxnx2q0

ð�1þe2jdkxnÞkxn

 !
A1

n

�1

L

k1x2

x2
1�x2

Xþ1
q¼�1

A1
q�

2jejdkxnx2q0

ð�1þe2jdkxnÞkxn
A2

n

¼
2jxq0; n¼0

0; n 6¼0

(
(12a)

for the first plate (i ¼ 1),

D ky þ
2np
L

� �4

� qhx2 þ 2jð1þ e2jdkxnÞx2q0

ð�1þ e2jdkxnÞkxn

 !
Ai

n

� 1

L

k1x2

x2
1 � x2

Xþ1
q¼�1

Ai
q�

2jejdkxnx2q0

ð�1þ e2jdkxnÞkxn
Ai�1

n

� 2jejdkxnx2q0

ð�1þ e2jdkxnÞkxn
Aiþ1

n ¼ 0 (12b)

for the ith plate (i ¼ 2; 3;…;N � 1), and

D ky þ
2np
L

� �4

� qhx2 þ 2je2jdkxnx2q0

ð�1þ e2jdkxnÞkxn

 !
AN

n

� 1

L

k1x2

x2
1 � x2

Xþ1
q¼�1

AN
q�

2jejdkxnx2q0

ð�1þ e2jdkxnÞkxn
AN�1

n ¼ 0

(12c)

for the Nth plate. The complex coefficients Ai
n can be com-

puted from Eq. (12). The energy transmission and reflection

coefficients of acoustic waves are calculated by

T ¼
Xþ1

n¼�1
jBðNþ1Þþ

n j2ReðkxnÞ=kx0; (13a)

R ¼
Xþ1

n¼�1
jB1�

n j
2
ReðkxnÞ=kx0: (13b)

III. RETRIEVAL METHOD OF EFFECTIVE MATERIAL
PARAMETER OF THIN-PLATE MMS

A. Transfer matrix method

In the general case, a multilayered thin-plate structure

can be represented effectively by an acoustic fluid with ani-

sotropic dynamic mass. The transfer matrix method, which

has been widely used in the past to analyze and measure

acoustical properties of porous materials,23 will be employed

here to evaluate effective medium properties of thin-plate

MMs. For an effectively homogeneous medium with aniso-

tropic mass density ~qe ¼ diag qe; qave½ � and thickness de, the

transfer matrix Te is defined by

pA

vA
x

" #
x¼0

¼ Te

pA

vA
x

" #
x¼de

; (14)

where pA and vA
x are the pressure and normal velocity, and

Te ¼
cos kxde jqex=kxð Þsin kxde

jkx=qexð Þ sin kxde cos kxde

" #
; (15)

with

k2
x

qe

þ
k2

y

qave

¼ x2

je
; (16)

where je is effective bulk modulus. qave is the effective mass

density for waves incident in the y direction, and follows the

relation24

1

qave

¼ 1

d þ h

d

q0

þ h

q

� �
: (17)

The remaining unknown parameters qe and je can be

retrieved by enforcing T ¼ Te, where T is the transfer ma-

trix of the multilayered plates and can be computed accord-

ing to analytic solutions derived in the above section. With

the help of Eq. (15), it is obtained that

kx ¼ 6
1

de
cos�1 T11 þ

2pm

de
; m ¼ 0; 1; 2; :::; (18)

and

qe ¼
jkx sin kxde

xT21

; (19)

where de ¼ N d þ hð Þ. From Eq. (16), the effective bulk

modulus is given by

je ¼
x2

k2
x=qe þ k2

y=qave

: (20)

1846 J. Acoust. Soc. Am., Vol. 135, No. 4, April 2014 Li et al.: Effective properties of plate metamaterial

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  222.195.95.207 On: Mon, 14 Apr 2014 02:46:13



B. Effective mass and modulus for a single-layer MM

To gain further insight into the relation between overall

properties and structural parameters of the MM, analytic

expression of effective mass density and modulus is

expected for a single-layer MM in the long-wavelength limit.

When the lowest two orders (n ¼ 0;61) vibration modes are

retained in this limit, Eq. (12) becomes in the normally inci-

dent case

�qhx2 þ 2jx2q0

kx0

� �
A0

� 1

L

k1x2

x2
1 � x2

A0 þ A1 þ A�1ð Þ ¼ 2jxq0; (21a)

D
2p
L

� �4

� qhx2 þ 2jx2q0

kx1

 !
A1

� 1

L

k1x2

x2
1 � x2

ðA0 þ A1 þ A�1Þ ¼ 0; (21b)

D
2p
L

� �4

� qhx2 þ 2jx2q0

kxð�1Þ

 !
A�1

� 1

L

k1x2

x2
1 � x2

ðA0 þ A1 þ A�1Þ ¼ 0; (21c)

from which unknown coefficients A0, A1, A�1 can be deter-

mined. We then use the averaging field method to derive

analytic expressions of effective mass density and effective

modulus. For the unit cell of the single-layer MM, effective

mass density is defined as the net force versus the total

acceleration

qeff ¼
Fnet

ap þ aair

; (22)

where the net force Fnet and accelerations of the plate ap and

air aair are expressed as

Fnet ¼ jq0x
ðL=2

�L=2

U1dy �
ðL=2

�L=2

U2dy

 !
; (23a)

ap ¼ h

ðL=2

�L=2

Xn¼1

n¼�1

Ane�jðkyþ2np=LÞydy ¼ �A0hLx2; (23b)

aair ¼
ðL=2

�L=2

ð0

�d=2

ð�jxrxU1Þdxdy

þ
ðL=2

�L=2

ðd=2

0

ð�jxrxU2Þdxdy: (23c)

In the long-wavelength case (k� L; d; h), it is assumed

that ejkx0d=2 � 1 and kxð61Þ � �2jp=L. Equation (22) is sim-

plified as

qe ¼
2jq0 1� A0c0ð Þ
�A0hxð1þ d=hÞ : (24)

Substituting A0 that is solved from Eq. (21) into Eq. (24)

results in

qe ¼
h

dþ h
qþ 1

hL

m1x2
1

x2
1�x2 1þ 2k1L3

16Dp4� L4qhx2

 !
0
BB@

1
CCA:

(25)

Effective modulus is defined as the total bulk stress ver-

sus the total bulk deformation

je ¼
hrbi
hebi

; (26)

with

hrbi ¼
ðL=2

�L=2

ðd=2

�d=2

ðrii=3Þdxdy; (27a)

hebi ¼
ðL=2

�L=2

�rxU1

jx

� �����
x¼d=2

� �rxU2

jx

� �����
x¼�d=2

" #
dy:

(27b)

Assume ejkx0h � 1 in the limit k� L; d; h, and neglect the

bulk deformation in the thin plate. In the quasi-static case,

Eq. (27) can be simplified as

hrbi¼
ðL=2

�L=2

ðd=2

�d=2

�pdxdy;

¼�jxq0

ðL=2

�L=2

ð0

�d=2

U1dxdyþ
ðL=2

�L=2

ðd=2

0

U2dxdy

 !
;

��2jc0Lq0 sink0d=2; (28a)

hebi � �
2jL sin k0d=2

c0

: (28b)

It can be deduced from Eqs. (26) and (28) that in the

quasi-static case, the effective bulk modulus of the thin-plate

metamaterial is close to that of the air je � q0c2
0.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Effective mass density in normal incidence

Consider material parameters E ¼ 3:9 GPa, � ¼ 0:4,

and q ¼ 1400 kg=m3 for the epoxy plate, and h ¼ 0:4 mm,

d ¼ 4 mm. The mass density and sound velocity of the air

are taken as q0 ¼ 1:25 kg=m3 and c0 ¼ 343 m=s. For nor-

mally incident waves, Fig. 2 shows the real part of the effec-

tive mass density of single-layer MMs (N ¼ 1) predicted

by the transfer matrix method in three cases: (1) L ¼ 4 mm,

(2) L ¼ 40 mm with k1 ¼ 104N=m, m1 ¼ 0:432 g, and (3)

simply supported plates (k1;m1 !1) with periodicity

L ¼ 40 mm.

Shown in the first case of Fig. 2 is the result of relatively

small periodicity L ¼ 4 mm. The resonant frequency of

MMs, at which effective mass density approaches infinity, is

758 Hz, and is very close to that of mass-spring resonator

x1=2p¼ 767 Hz. When further simplified for small values of
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L, Eq. (25) follows a typical expression of the Lorentz-

medium model

qeff ¼
h

d þ h
qþ 1

hL

m1x2
1

x2
1 � x2

 !
: (29)

The approximate result given by Eq. (29) is shown by

the dashed line in Fig. 2 and agrees very well with that by

TMM. Equation (29) is also the result of the rigid-plate case

(E!1), meaning that negative effective mass density can

be realized due to the mass-spring resonance when the perio-

dicity L is very small.

When L is increased to 40 mm, the negative effective

mass can be obtained in two frequency bands, as shown in

Fig. 2 for the second case. For comparison, the approximate

result given by Eq. (25) is plotted by the dashed line and

shows good agreement with that of TMM. To discover the

physical mechanism whereby negative mass density arises in

two separate bands, the resonant frequencies given by the

TMM are shown in Fig. 3 for different periodicity L. For a

pure plate of width L, the natural frequencies of first (n ¼ 1)

and second (n ¼ 2) order symmetric modes are displayed in

Fig. 3 for comparison, which are computed according to

qhx2=D ¼ ð2np=LÞ4. As a reference, the resonant frequency

767 Hz of the mass-spring resonator is also plotted. It can be

seen that the resonant frequency of the MMs coincides with

those of either the plate or the mass-spring resonator in the

length scales of L far away from their crossover region. This

means that, in addition to mass-spring resonance, the flexural

vibration of the thin plate provides a new mechanism for

negative effective mass density. A similar mechanism has

also been reported in a flexible plate patterned periodically

with heavy gratings.25 The second case in Fig. 2 is taken

near the crossover region belonging to the first-order flexural

mode of the plate, where it is the hybrid vibration mode of

the mass-attached plate that contributes to negative effective

mass density. The second-order flexural mode appears at

high L, which provides an addition band of negative mass in

the frequency region of interest. Since the result (25) is

derived under the first-order approximation, it shows a very

good agreement with the first branch of the TMM results and

parts of the second branch where the second-order flexural

mode is not involved much.

In the third case, the simply supported plate (k1;
m1 !1) is considered, and Eq. (25) is reduced to

qe ¼
h

d þ h

3

2
q� 8Dp4

hL4x2

� �
: (30)

Effective mass density given by Eq. (30) is shown in

Fig. 2 by the dashed line, which coincides with that of the

TMM. The results demonstrate that the thin-plate MM com-

posed of simply supported plates follows the Drude-medium

models with negative effective mass below the cut-off fre-

quency 464 Hz. According to Eq. (30), the cut-off frequency

is proportional to the plate rigidity D, consistent with the

observation in a clamped plate.26

For the MMs composed of multilayered plates (N � 2),

multiple scattering among plates may differentiate their

effective properties from those of single-layer MMs. Taking

the MM of the third case in Fig. 2 as an example, Fig. 4

shows the transmission amplitudes of normally incident

waves for different numbers of plates (N ¼ 1; 2;…; 6). For

all cases in Fig. 4, the first peak in transmission is due to

near zero effective mass around the cut-off frequency

464 Hz. Since the cut-off frequency is mainly associated

with the eigenfrequency of a single plate,5 the frequency of

the first transmission peak is invariant to the plate numbers.

Multiple scattering prevails in the region beyond 464 Hz,

where the effective mass density of the single layer is

positive. As a result, thin-plate MMs behave as a one-

dimensional periodic structure, and additional transmission

peaks appear in the case of N > 1 due to the standing wave

resonance in the periodic structure. So the effective medium

description is only available in the region around and below

the cut-off frequency, where multiple scattering effects can

be negligible. Figure 5 shows the effective mass density of

MMs with different numbers of layers. In the effective me-

dium region, the effective mass density varies with very

small fluctuations with the change of layer number.

FIG. 2. Effective mass density qe in normally incident case predicted by

transfer matrix method (TMM) and approximate results in three cases: (1)

L ¼ 4 mm, (2) L ¼ 40 mm with k1 ¼ 104 N=m, m1 ¼ 0:432 g, and (3) sim-

ply supported plates (k1;m1 !1) with L ¼ 40 mm.

FIG. 3. Resonant frequencies of the MMs predicted by TMM and approxi-

mate results (25), the resonant frequency 767 Hz of mass-spring resonators,

and natural frequencies of the first and second order flexural modes of a bare

plate of the width L.
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B. Effective mass density in oblique incidence

For oblique incidence, the effective mass density of

thin-plate MMs follows:

~qe ¼
qe 0

0 qave

� 	
;

where qave was given by Eq. (17) and qe will be examined

below. Consider the single-layer MM used in the example of

Fig. 4 with two different plate thicknesses 0.4 and 1.5 mm.

Figure 6(a) shows effective mass density qe for three inci-

dent angles h ¼ 0; p=6; p=3. In the case of h ¼ 0:4 mm,

effective mass density is almost invariant to the incident

angle. When the plate thickness is increased to h ¼ 1:5 mm,

the dependence of qe on the incident angle becomes noticea-

ble. It is important to note for the latter case that effective

mass density qeðx; kyÞ will be written as a function of not

only temporal frequency x, but also the spatial one ky. From

the physical point of view, ky-dependent material parameters

can be attributed to the spatial dispersion in structured mate-

rials, and are very likely to appear when the periodicity of

the unit cell is in the order of the wavelength.27 For thin-

plate MMs, the factor that dominates the spatial dispersion

can be explored by examining the coincidence effect

between acoustic wave and flexural wave in the plate struc-

ture. In the case of uniformly homogeneous plates, the

coincidence phenomenon takes place when the lateral wave-

number ky of the incident acoustic wave is coincident with

the flexural wavenumber of the plate, and a maximum of

wave transmission can be observed as a result. For the struc-

tured MMs, transmission peaks can be clearly observed at

near-zero-mass frequencies, as shown in Fig. 6(b). To verify

if the coincidence condition is exact for the structured MMs,

the flexural wavenumber kb xð Þ of the structured plate is

plotted in Fig. 7 against frequency. The computation method

for kb xð Þ is provided in the Appendix. The lateral wavenum-

ber ky of the incident wave versus the coincidence frequency,

which is designated as the peak transmission frequency, is

shown in Fig. 7 for comparison, and excellent agreement can

be observed between both results.

The physical interpretation of the spatial dispersion of

the thin-plate MMs is thus given by the fact that there is no

unique frequency for different flexural wavenumbers of the

structured plate. Therefore acoustic responses and associated

effective medium properties of the MMs are relevant to the

incident angle due to the coincidence effect between acoustic

wave and the flexural vibration of the plate. As can be seen

in Fig. 7, the spatial dispersion is very weak in the case of

h ¼ 0:4 mm because the frequency 464 Hz remains almost

unchanged with respect to the flexural wavenumber. This is

often the case when the acoustic wavelength is much greater

than the periodicity, for example, k0 ¼ 18:4L in this case. In

the case of h ¼ 1:5 mm, it is evident that the spatial disper-

sion becomes noticeable due to the non-zero slope for the

dispersion curve. The frequency is 1753 Hz at kb ¼ 0, and

the corresponding wavelength satisfies k0 ¼ 4:9L. The above

results may conclude that the spatial dispersion of the MMs

appears in a relatively small k0=L and its presence can be

explained by the dispersion effect of the flexural vibration of

the structured plate.

For comparison, Fig. 8 shows results similar to those in

Fig. 7 but for the uniform plate without resonators, where

the dispersion relation of the uniform plate plotted by the

solid line is given by k4
b ¼ x2qh=D. These results means that

the spatial dispersion is always present in a uniform plate,

and therefore the peak transmission frequency depends on

the incident angle. However, there exists the lowest coinci-

dence frequency flow for a uniform plate, which is predicted

by28

flow ¼
c2

0

2p

ffiffiffiffiffiffi
qh

D

r
: (31)

As seen in Fig. 8, the lowest coincidence frequencies for

both cases h¼ 0.4 mm and h¼ 1.5 mm are much higher than

FIG. 4. (Color online) Transmission amplitudes of acoustic waves normally

incident on MMs composed of a different number of plates (N ¼ 1; 2;…; 6).

FIG. 5. (Color online) Effective mass density of MMs composed of different

number (N) of plates versus the frequency.
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those observed for the structured plate with resonators

(Fig. 7). So the role played by the presence of the attached

resonators is that the resonance and coincidence frequencies

of the structured plate will be drastically reduced in compari-

son to the uniform plate. This means that a structured plate

with resonators is superior to a uniform plate for application

to low-frequency wave manipulation.

V. APPLICATION TO ACOUSTIC DIRECTIVE
RADIATION

Acoustic MMs composed of simply supported plates

(k1;m1 !1) can be used to block low-frequency noises in

the frequency range of negative effective mass density. For

noise-isolation applications, the absence of the spatial

dispersion of MMs may be preferred since there is a unique

cut-off frequency for incoming waves with arbitrary direc-

tion of incidence. This section will present the MM’s appli-

cation to frequency-controlled directive radiation, whose

underlying mechanism relies on the spatial dispersion effect.

The basic principle of this application can be understood

from the results of the case h ¼ 1:5 mm in Fig. 6(b). For a

specific frequency, wave transmission reaches the maximum

at the coincidence angle, where effective mass density is

near zero. The transmission amplitude will be suppressed in

angles different than the coincidence one due to the spatial

dispersion of the MMs. As a result, a narrow band of high

transmission will be formed in the angular spectrum, which

can be used for directive radiation. More importantly, the

coincidence angle will be shifted when the frequency is

changed. This means that the radiation angle can be tuned by

modifying only the operating frequency without a change to

the MM structure.

The device for acoustic directive radiation is constructed

by placing a sound source behind a MM, forming a radiation

pattern in the front region of the MM. For numerical verifica-

tion, the proposed MM is made of epoxy plates possessing the

FIG. 6. (a) Transmission amplitudes

and (b) effective mass density qe of

thin-plate MMs with the plate thick-

nesses 0.4 and 1.5 mm for three differ-

ent incident angles h ¼ 0; p=6; p=3.

FIG. 7. The dispersion curve for flexural waves (kb) propagating in the plate

with resonators (solid line) and the lateral wavenumber ky of the incident

wave versus the peak transmission frequency (hollow circle).

FIG. 8. The results similar to those in Fig. 7, but for the uniform plate with-

out resonators.
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following parameters: L ¼ 100 mm, h ¼ 2 mm, d ¼ 20 mm,

and N ¼ 6. Figure 9 shows wave transmission amplitudes for

different frequency and incident angle, which are computed

according to Eq. (13a). For incident angles close to h ¼ 90�,
the effective medium property of the MM is close to that of

the air due to the small thickness-to-distance ratio h=d. As a

consequence, wave transmission is enhanced in the vicinity of

incident angle h ¼ 90�. Apart from this angular region, a nar-

row band of high transmission can be clearly observed.

To evaluate the directive radiation by the MM device,

numerical simulations were conducted by use of COMSOL

MULTIPHYSICS. The distance between the sound source and the

backside of the MM is 10 mm. Figure 10 shows by the solid

line the simulation results of the radiation pattern in the front

region of the device at four different frequencies: 373, 370,

365, and 360 Hz. The radiation pattern is depicted by the

normalized pressure intensity defined as jPfarj2=jP0j2, where

Pfar and P0 are far field pressures in the presence and

absence of the MM, respectively. Notice that the radiation

pattern in the angular spectrum ranging from �90� to 0� has

been omitted due to the symmetry. For a comparison, trans-

mission amplitudes given by the analytic results (13a) are

plotted by the dashed line, and are in good agreement with

the simulation results. The result clearly demonstrates that

the thin-plate MM is capable of directive radiation with the

radiation angle varied for different frequency. Note that the

directivity can be enhanced when transmission peaks in both

frequency and angular spectra are sharpened by increasing

the layer number of the MMs.

VI. CONCLUSIONS

Effective dynamic properties of multilayered thin plates

with attached mass-spring resonators are examined based on

analytic solutions for plane acoustic waves incident on the

plate structures. For normal incidence, negative effective

mass density can be realized by the resonance of either the

mass-spring resonator or the plate matrix. It is found that

Lorentz or Drude medium models for effective mass density

can be easily realized by the structured plates. In the

obliquely incident case, spatial dispersion has been observed

in thin-plate MMs, and effective mass density is dependent

on the incident angle as a result. As an application of this

spatial dispersion, the thin-plate MMs are designed for direc-

tive radiation, and the radiation direction can be controlled

by varying the operating frequency without changing the

MM structure. Their potential application to underwater

sonar detection is anticipated.
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APPENDIX: DISPERSION RELATION FOR FLEXURAL
WAVE IN THE THIN-PLATE STRUCTURE

Figure 11 shows one layer of the thin-plate MM

depicted in Fig. 1. The method for computing the dispersion

curves for flexural vibration of the thin plate will be pre-

sented below. In the time-harmonic case, the flexural wave

equation of the thin plate follows:20

@2

@x2
D
@2u

@x2

� �
� qhx2u ¼ 0; (A1)

where the transverse displacement of the plate is

u x; tð Þ ¼ U xð Þejxt. The general solution UðxÞ of Eq. (A1)

can be expressed as

UðxÞ ¼ c1cosðaxÞ þ c2sinðaxÞ þ c3coshðaxÞ

þ c4sinhðaxÞ; (A2)

FIG. 9. Transmission amplitudes of acoustic waves incident on a thin-plate

MM with different frequencies and incident angles.

FIG. 10. Simulation and analytic results of radiation patterns in the front

region of the metamaterial behind which an acoustic source operating at

four frequencies: 373, 370, 365, and 360 Hz is placed with the distance

10 mm.
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with a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhx2=D4

p
. With the help of Eq. (A2), the dis-

placement for the nth unit cell is written as

Unðx0n; tÞ ¼ c1
n cos ax0nð Þ þ c2

n sin ax0nð Þ
þ c3

n cosh ax0nð Þ þ c4
n sinh ax0nð Þ; (A3)

with x0n ¼ x� Xn.

At the boundary x ¼ Xnþ1, the continuous conditions of

the transverse displacement, slope, bending moment, and

shear force are written by the following relations:

Unþ1ð0Þ ¼ UnðLÞ; (A4a)

U0nþ1ð0Þ ¼ U0nðLÞ; (A4b)

U
00

nþ1ð0Þ ¼ U
00

nðLÞ; (A4c)

DU000nþ1ð0Þ �
k1x2

x2
1 � x2

Unþ1ð0Þ ¼ DU000nðLÞ: (A4d)

Equation (A4) is written in the matrix form as

KWnþ1 ¼ HWn; (A5)

where wn¼ C1
n; C2

n;C
3
n;C

4
n


 �T
and F¼�k1x2=ðDa3ðx2

1�x2ÞÞ,

K ¼

1 0 1 0

0 1 0 1

�1 0 1 0

F �1 F 1

2
664

3
775; (A6)

H ¼

cosðaLÞ sinðaLÞ coshðaLÞ sinhðaLÞ
�sinðaLÞ cosðaLÞ sinhðaLÞ coshðaLÞ
�cosðaLÞ �sinðaLÞ coshðaLÞ sinhðaLÞ
sinðaLÞ �cosðaLÞ sinhðaLÞ coshðaLÞ

2
66664

3
77775:

(A7)

By use of the periodic condition for the unit cell, it is

obtained that

Wnþ1 ¼ ejqLWn; (A8)

where q is the Bloch wave number. Combining Eqs. (A5)

and (A8), the dispersion equation

jK�1H� ejqLIj ¼ 0 (A9)

is obtained, where I is the fourth-order identity tensor.
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