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Abstract. A mass–spring system with negative effective mass is experimen-
tally realized, and its transmission property is examined in the low-frequency
range. The local resonance of the basic unit is observed and explained by
Newton’s theory. The negative effective mass is confirmed by experiments
through the transmission properties of a finite periodic system composed of
such basic units. In the negative mass range, low transmissions of the system are
observed and it is well predicted by the theory. In addition, zero effective mass is
discussed and experimentally investigated, which gives rise to no phase shifts in
the system. Finally, the anti-vibration effect with a negative mass system is
also analyzed. The relevant results are helpful for a better understanding of the
resonant nature of metamaterials.
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1. Introduction

Under external stimulations, most natural materials react in phase with the excitation. However
by carefully designing microstructures, a class of composites can be fabricated to react out of
phase with the external excitation due to resonant mechanism. These materials with unusual
responses have been classified as metamaterials, such as periodic wires [1] and split ring
resonators [2] in electromagnetics, as well as the locally resonant phononic crystals [3] and the
periodic Helmholtz resonant cavities [4] in acoustics. The material parameters of metamaterials
can be tuned to any values in material space by adjusting the microstructures. As an example,
locally resonant phononic crystals can exhibit negative mass density [5] at the frequencies where
sub-wavelength microstructures resonate and move out of phase with the excitation. Recently,
rigorous definitions of effective mass density for particle or fiber filled metamaterials have been
discussed with multiple scattering theory [6, 7].

Negative mass density can also be realized by a simple mass–spring system [8, 9]. Milton
and Willis [10] examined the microstructures giving rise to negative effective mass. They
suggested that the dynamic effective mass of composite materials should be defined in the
framework of Newton’s law of motion, contrary to the static gravitational mass. Their studies
reveal that composite materials with carefully designed microstructures can have anegative-
momentumfor a positive-momentumexcitation, thus characterized by the negative effective
mass. Although many theoretical works are devoted to discuss the negative effective mass,
however the corresponding experimental studies devoting to illustrate the intrinsic mechanism
are few.

In this work, we will experimentally examine the composite system proposed by Milton
and Willis [10] in the low frequency regime. Contrary to high frequency or ultrasonic
experiments [3, 11], low frequency experiments are more suitable to illustrate the underlying
mechanism of basic properties, since the movement of microstructures can be well observed
and determined experimentally. The paper is arranged as follows: we will first recall the
model proposed by Milton and Willis in section2. Experiments will be set-up to characterize
the dynamic response of the model. The transmission properties of a one-dimensional (1D)
finite periodic system will be determined. The relevant analyses will be given in section3.
An interesting phenomenon induced by zero effective mass will be discussed in section4.
In section 5, the anti-vibration design of a finite system with negative effective mass is
experimentally analyzed and discussed. The paper ends with some conclusions and remarks.
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Figure 1. 1D model with negative effective mass.

2. Theoretical analysis

The basic unit is shown in figure1. A rigid bar of massM0 has a cavity to connect it to a rigid
sphere of massm by two massless and elastic springs with equal constantG. The rigid bar
together with the internal sphere and springs is equivalent to a solid object with an effective
mass (or p-mass)MP

eff; both have the same momentum. Under a time harmonic excitation e−iωt ,
the displacement relation between the rigid sphere and bar is given by [10]

x

X
=

2G

2G − mω2
, (1)

wherex andX are the displacement amplitudes of the sphere and bar, respectively. The effective
massMP

eff of the unit is defined as the total momentum divided by the bar velocity, this leads
to [10]

MP
eff = M0 +

mω2
0

ω2
0 − ω2

, (2)

where ω0 =
√

2G/m is the resonant frequency. The expression ofMP
eff is analogous to

the Lorentz model for electromagnetic metamaterials [12]. Therefore the basic unit shown
in figure 1 shares some similarities with electromagnetic metamaterials. In this sense, the
momentum is analogous to electric or magnetic polarizations and the velocity is analogous
to electric or magnetic fields. Equation (2) shows that the effective massMP

eff can be negative in
the frequency band fromω0 to ω0

√
(M0 + m)/M0. The negativity of the effective mass comes

from the negative momentum of the sphere, since it can move out of phase with respect to the
bar after resonance. However, the energy of the unit cannot be simply defined with the effective
p-mass and bar velocityV asE = MP

eff|V |
2/2, since the kinetic energy must be positive even in

the negative mass band.
In the actual case, the negative mass of the analyzed model cannot be measured directly. As

a common and indirect method, an infinite 1D periodic mass–spring system can be constructed
with the basic units described previously connected with equal springs of constantK , as
shown in figure2. By evaluating the dispersion relation and transmission properties of the
whole system, the frequency-dependent properties of each unit can be determined. A spacinga
between two adjacent units is assumed. From Newton’s law of motion, the total momentumP
of thenth unit satisfies the following equation, whereXn is the displacement of thenth unit

dP

dt
= K (Xn+1 − Xn) + K (Xn−1 − Xn). (3)
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Figure 2. An infinite periodic mass–spring system.

For a harmonic field, this leads to

−ω2MP
eff Xn = K (Xn+1 + Xn−1 − 2Xn). (4)

According to the Bloch’s theorem [13, 14] and periodic boundary conditions, the displacement
of each unit can be represented byXn = Aei(qna−ωt), whereq is the Bloch wavevector. From (4),
we get the dispersion-like relation for the infinite periodic system

MP
eff ω2

= 4K sin2 qa

2
. (5)

For a finite periodic system countingN units, the transmission of the system can be derived
analytically. The displacement of the unit is supposed to beXn(t) = X̄ne−iωt , whereX̄n is the
time-independent complex displacement. Then it is easy to obtain the following relations:

(2K − ω2MP
eff)X̄n = K (X̄n+1 + X̄n−1), n = 1, 2, . . . , N − 1; (6a)

(K − ω2MP
eff)X̄n = K X̄n−1, n = N. (6b)

From (6), the transmittanceT = |X̄N/X̄0| of the finite periodic system is

T =

∣∣∣∣∣
N∏

n=1

Tn

∣∣∣∣∣ , (7)

whereTn = X̄n/X̄n−1 is given by the following recurrent relation:

Tn =
K

K (2− Tn+1) − MP
eff ω2

, n = 1, 2, . . . , N, (8)

with TN+1 = 1.

3. Experimental results

To verify the frequency-dependent effective mass of the studied model, we conduct 1D
experiments for the mass–spring system analyzed previously. In the experiment, we place the
samples in the horizontal direction. In order to eliminate the friction of the system during the
movement, an air track with triangular cross-section is employed. The unit is made of aluminium
blocks with3 shape in the bottom to match the configuration of the air track. The upper surface
of the track and the bottom of the blocks are perfectly matched to guide the unit in an accurate
direction. When the air track is driven by an air pump, the tiny holes made on the surface of
the track produce high-pressure air currents to lift the unit from the track. By this method, the
contact friction can be efficiently reduced. Each unit is made of three blocks of length 30 mm,
the first and last blocks are fixed together on the top by an aluminium sheet and the middle one
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Figure 3. (a) Scheme and (b) actual picture of the experimental setup.

is free to move. The three blocks are connected to each other by two soft springs with the same
spring constant 37 N m−1. The connecting point of the spring is very close to the centroid of
the block to make the stability in motion sure. The total weight of the outer connected blocks of
each unit isM0 = 101.10 g, and the weight of the middle block ism = 46.47 g. A time harmonic
displacement is produced through MTS Tytron 250 as the excitation. The scheme of the system
is shown in figure3.

The displacements ofM0 andm in the model are measured with a CCD technique. The
CCD camera captures pictures with a time interval of 7 ms. With this technique, we first measure
the displacement relation of the massesM0 andm for a single unit. The experimental result for
the amplitude ratio|x|/|X| are shown in figure4, and they are compared with the theoretical
prediction given by (1) in the frequency range below 12 Hz. An excellent agreement can be
observed in the entire testing region. The result clearly shows that the displacement ofm is
greatly enhanced close to the resonant frequency. After experiencing the strong resonance,m
always moves in the opposite direction with respect toM0. For this reason, the motion ofm will
be characterized by a negative momentum. This is also the underlying mechanism for negative
effective mass. In the experiment, we perform the measurements many times and find that the
experimental error is very small. The excellent correlation between the measured and theoretical
results indicates that the influence of friction can be neglected and that the data acquisition
method is reliable in this frequency regime.

For an infinite periodic system consisting of the prescribed models, substituting the
experimental parameters into (5), we give the dispersion relation of the periodic system in
figure5(a) in the region below thecut-off frequency 12 Hz. It can be seen that negative effective
mass of the units will lead to a band gap from about 5.8 to 7.6 Hz. It is evident that the
gap is induced by the negative values of mass. This may be an indirect method to confirm
the negative mass in experiments. However the dispersion curve is almost impossible to be
examined experimentally, since the particle motion in an infinite 1D lattice is different from that
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Figure 4. Ratio of displacement amplitudes|x|/|X| betweenm andM0 for one
unit under a harmonic excitation.

(a) (b)

Figure 5. (a) The dispersion relation predicted by (5); (b) the experimental and
theoretical transmittances of a finite system with seven units.

in a finite one [15] due to the different boundary conditions. However a correlation between
the dispersion curve of an infinite system and macroscopic transmission property of a finite
system still exists. From this consideration, we employ sevennegative-massunits described
above, which are connected to each other by springs of constant 117 N m−1, to construct a finite
periodic system. Note that the length of one period (composed of one unit and one spring) is
137 mm. Figures3(a) and (b) show the schematic and actual pictures of the experimental set-
up, respectively. The displacementsX0 andXN of the excitation and the last unit are measured,
respectively. Figure5(b) gives the amplitude ratio ofXN/X0, defined as the transmittance of the
finite system. As a comparison, the theoretical transmittance predicted by (7) is also depicted.
Good agreement can be observed between the experimental and theoretical results in the whole
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Figure 6. The experimental and theoretical displacement curves ofm andM0 at
the frequency 7.57 Hz.

frequency range. In the band gap of the infinite periodic system as shown figure5(a), the
transmittance is less than−20 dB, which is clearly due to the negative p-mass of the constitutive
units. In the gap, we observe that the vibration amplitude ofM0 decays rapidly almost within
three periods, while the internal blocksm vibrate remarkably. Till now we can conclude that the
negative effective mass can indeed be realized in a simple mass–spring model.

4. Zero effective mass

From (2), we can obtain the zero effective p-mass for the unit at the frequencyω =

ω0
√

(M0 + m)/M0 . In this situation, a simple relationx/X = −M0/m can be obtained from (1),
which indicates that the total momentum of the unit is zero. The theoretical frequency of zero
mass is predicted as 7.67 Hz for the unit. In the experiment, we take the measurements carefully
at frequencies around 7.67 Hz and find that the amplitude ratiox/X ≈ 2.03 at 7.57 Hz is the one,
which is more close toM0/m ≈ 2.17 of the sample. We attribute this frequency shift to slight
dissipation in the experimental system. When the dissipation is incorporated into the negative
mass model, for example a dashpot component is considered (see equation 2.13 in [10]), the
frequency corresponding to zero mass may be shifted by the additional dissipation term. In this
experiment, the dissipation may be originated from the viscosity of springs, and the remaining
contact frictions between samples and the track. For a single unit, the measured displacements
of M0 andm with respect to time together with the theoretical results at 7.57 Hz are shown
in figure 6. A good correlation between experiment and theory can be found. Although the
measured displacement ofm has a little deviation with respect to the theory due to dissipation,
it is clear thatm always moves in the opposite direction ofM0 and that the total momentum of
the unit is extremely small.

For a finite periodic system composed ofzero-massunits (at the examined frequency), we
conduct the experiment on a seven-unit system at the frequency 7.57 Hz. It is observed that
at this frequency all units move in the same manner and the springs connecting units have no
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deformations. The whole system reacts like a rigid bar experiencing no phase shift in the system.
We know that the vanishing momentum of thezero-massunit means its inertial force under the
outside excitation is zero, so it seems like that the periodic system were composed of massless
springs. In this sense, it is evident that the connecting springs will not deform and the whole
system behaves like a rigid bar. Another explanation can also be given according to the lattice
wave propagation in a periodic system. In (5), we can find that the wave vectorq will be zero
when the p-massMP

eff = 0. It is known that the wavevector characterizes the field distribution
and spatial dispersion of propagating waves. The zero wavevector indicates that the wavelength
of the propagating wave in the system is infinite and this means that there are no variations
of the displacement fields in the system. This phenomenon corresponding to the zero p-mass
is very similar to that occurring for electromagnetic waves propagating in a matched zero-
index metamaterial [16], which has zero permittivity and permeability simultaneously. Inside
this material, the electromagnetic fields have zero phase variations.

5. Applications and discussions

In this section, the anti-vibration by a negative mass system will be discussed. The previous
experiments have revealed that vibrations can be stopped in the frequency range where the
effective mass is negative, so it is natural to explore this property for anti-vibration design.
Consider now a finite periodic system ofN units, which is connected with a massML by a spring
Kc at the end of the system. The transmittanceT of the whole system can be calculated by

T =

∣∣∣∣∣
N+1∏
n=1

Tn

∣∣∣∣∣ , (9)

whereTn is given by the following recurrent relation:

Tn =
K

K (2− Tn+1) − MP
eff ω

2
, n = 1, 2, . . . , N − 1, (10)

with TN =
K

Kc(1−TN+1)+K−MP
eff ω

2 andTN+1 =
Kc

Kc−MLω2 .
A finite system with three periods is examined in the experiment, as shown in figure7.

The transmission property is first measured and compared with the theoretical prediction given
by (7), which is shown in figure8. We find that the correlation between the experiment and
the prediction is very good and both results show a stop band from 6 to 7 Hz, at which the
transmittance is around−20 dB in the experiment. In the following, we attach the previous
system with a massML by a springKc. By varying the values ofML andKc, we systematically
evaluate the anti-vibration effect of this device. Four different cases are examined: (a)ML =

45.78 g,Kc = 37 N m−1, (b) ML = 45.78 g,Kc = 117 N m−1, (c) ML = 72.46 g,Kc = 37 N m−1

and (d)ML = 72.46 g, Kc = 117 N m−1. The theoretical predictions with (9) and experimental
results for the transmittance as a function of frequency are shown in figure9. Good agreements
between the theoretical and experimental results for different cases can be observed. From
figure 9, it can be seen that the stop band still exists for the examined cases, however the
corresponding frequency range and amplitude of vibration have been modified a little, compared
to the results without the attached mass. For the case ofML = 45.78 g andKc = 37 N m−1, the
vibration amplitude is beyond−20 dB in the band gap of the device, whereas the transmittance
can still achieve−15 dB, as shown in figure9(a). However when the connecting spring is
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Figure 7. (a) Scheme and (b) actual picture of the anti-vibration experiment.

Figure 8. Experimental and theoretical transmittances for a three-unit system.

replaced byKc = 117 N m−1, a pass band around 7 Hz takes place in the band gap (figure9(b)),
this is detrimental to the shielding effect of the device. When a relatively large massML =

72.46 g is used, the band gap of the system is relatively insensitive to the connecting springs,
as shown in figures9(c) and (d). These results reveal that the anti-vibration design utilizing
negative effective mass needs careful analysis of the whole system, in order to make an efficient
anti-vibration device.

The anti-vibration effect presented above comes from the total reflection mechanism
induced by negative mass. It is different from the transformation based acoustic cloaking in
2D [17, 18] and 3D [19, 20]. Based on the coordinate transformation method [21, 22], acoustic
metamaterial with anisotropic mass density could guide waves around an object without any
disturbance. It is worth to say that the negative mass model shown in figure1 is important in
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Figure 9. Experimental (black dot) and theoretical (solid line) transmittances for
a three-unit system with an attached mass: (a)ML = 45.78 g, Kc = 37 N m−1;
(b) ML = 45.78 g, Kc = 117 N m−1; (c) ML = 72.46 g, Kc = 37 N m−1 and
(d) ML = 72.46 g,Kc = 117 N m−1.

realizing the acoustic cloak, since the model can be easily extended to 2D and 3D case so that
the mass density has a matrix form, as indicated by Milton and Willis [10]. The periodic lattice
structures made of mass and spring have been acting as a wave filter and wave guiding [23].
Thus the mass–spring cloak that shields objects from vibration can be anticipated with the help
of the negative mass model.

6. Conclusions

In this paper, we have studied experimentally the mass–spring model proposed by Milton and
Willis [ 10]. This system can have negative effective mass in the frequency band when the
internal sphere moves out of phase with respect to the outer bar. For an indirect demonstration
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of negative mass, a finite periodic system consisting of many units connected by elastic springs
is constructed. By measuring the transmission curves of the system, the low transmission
frequency range has been observed and it corresponds well to the stop band induced by the
negative mass for an infinite system. In addition, zero effective mass is also examined. In the
case of zero effective mass, the constructed finite system moves like a rigid bar, i.e. there is no
phase shift in the system. This phenomenon is induced by the zero momentum of the model and
can also be explained by the zero propagating vector in the system. Finally the anti-vibration
effect is investigated by experiments with negative effective mass. The results presented in this
paper may be helpful for understanding acoustic metamaterials in realizing negative parameters.
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