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Introduction

TiAl based alloys have good resistance to oxidation, creep and fatigue, and are con-
sidered to be one of the most promising structural materials for elevated temperature
applications [1-3]. Polysynthetically twinned (PST) TiAl crystals, which consist of a
series of well-oriented lamellae of TiAl (y) and Tiz Al (o), have been extensively used as
a model material to study mechanical behavior of the lamellar microstructure. The
mechanical properties of the PST crystal depend significantly on the lamellar orienta-
tion defined by the angle between the lamellae and the loading axis 6 [4]. When 6 = (°
or 90°, usually referred to as hard deformation modes, the PST crystals have the highest
yield stress. In this case, dislocations have to overcome the interface barriers. When
0 = 45°, on the other hand, the motion of dislocations is relatively easy and the crystal
has a low yield stress, corresponding to a soft deformation mode. The variation of the
yield stress as a function of § was determined experimentally by Fujiwara et al. [5].
Lebensohn et al. [6] adopted a pair of the matrix and the twin as a basic element, and
proposed a method to evaluate the yield stress of PST crystals. Grujicic and Zhang [7]
proposed a finite element method incorporating dislocation theory to analyze the yield
and deformation of TiAl polycrystals. Kad et al. [8,9] studied the plastic deformation
and fracture of PST crystals by numerical simulation and a micro-mechanical method.
Sun [10] advanced a dislocation pile-up model to study the influence of the layer
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thickness and the grain size on the yield behavior of an idealized TiAl polycrystal.
Schlogl and Fischer [11] presented a micromechanical model and gave the simulation of
the yield loci for PST crystals, and the detailed domain structures of the y phase were
considered with the help of finite element method.

In this paper, we will propose an analytical method based on dislocation theory and
continuum micromechanics to predict the yield stress of a PST crystal as a function of
the loading angle 0. The domain structures of the y phase will be taken into account in
an approximate analytical manner.

Microstructures of PST crystals

The PST crystal consists of the parallel plates of the y phase and the interspersed o
phase, which is schematically shown in Fig. 1. The crystallographic orientation between
the two phases is well known as (1 1§0>a2|](1 TO)y and {0001}, [[(111),, with the
(111), plane being parallel to the interfaces of the PST crystal. In the lamellar mor-
phology, there are six possible orientations of [1 1 O]y with respect to (1120), , therefore
the y lamella is constituted by the ordered domain structures composed of six differently
oriented variants yi, Y2, V3, Y4, Vs, Y6 In addition to o, /y interface, three different types
of y/y interfaces with different interfacial structures are present, and each can be re-
covered by rotating 60° about [111] from its neighbor. The adjacent lamellae match
exactly and have a (111)[112] true twin orientation when the rotation is 180°. In the
case of 60° rotation, the matching is only approximate and the neighborhood lamellae
form a pseudo-twin. The detailed description of the PST structure can be found in Refs.
[1,2,12].

In the following modeling, idealization of the PST crystal and the y phase are il-
lustrated by Figs. 1 and 2, respectively.
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Fig. 1. Model of PST crystal.
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Fig. 2. Idealization of the microstructure of y phase.

Micromechanical analyses
Modulus of PST crystal and average stress in the y phase

In this section, the effective modulus of the PST crystal will be determined from its
phase properties, and the distributed stresses in the different variants of the y phase will
be evaluated. To this end, the PST crystal is considered to be a composite material with
the o, plates dispersed in the y phase matrix. Since there are six differently oriented
variants in the y phase (Fig. 2), it is necessary to evaluate the average modulus of the y
phase material. The variants of the y phase are transversely isotropic with x} being the
symmetric axis (Fig. 2). Because all of the v/v interfaces are parallel to the plane (111),,
the average modulus of the y-phase can be calculated by the orientation average of the
six differently oriented variants (y1,7v2, V3, Y4, Y5, V6) in the plane (111),. As a result, the
average modulus of the y phase is also transversely isotropic with the symmetric axis
perpendicular to the plane (111),, the same as the o, phase. The material constants for
the variants of the y phase and the o, phase are taken from the calculation performed
by Yoo et al. [12], and are given together with the average modulus of the y phase in the
Table 1.

The PST crystal as a whole is also transversely isotropic with the same symmetric
axis as the y phase or o, phase. If the compliance tensors of the o, phase, the ho-
mogenized y phase, and the PST crystal are denoted by M’, M” and M, respectively, it
has [13]

-1 _ _
M=M"+/[(MM" —1)"" + (1 - f)1-S)] 'M" (1)
Table 1
Materials constants (unit: GPa)
Material constants Cn Cs3 Cp Cis Cu
Variant of y phase 190 185 105 90 120
o, phase 221 238 71 85 69

Average modulus of y phase 237 251 77 63 130
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where f'is the volume fraction of the o, plates, I is unit tensor, S is Eshelby tensor, and
[ 17" denotes the inverse of the said quantity.

In the following, the o, plates are considered as penny-shape inclusions dispersed in
the homogenized y phase. For a penny-shape inclusion in a transversely isotropic
matrix, the Eshelby tensor can be written as in Wapole’s notation [14]:

S = [00 — Mpy/(M} + My 110]

where M} are the components of the compliance for the homogenized y phase.
The average stress in the homogenized y phase is determined by [13]:

1 _

(e = 77 (M" = M) (M-M)z =P 2 @
where ( ), denotes the volume average over the matrix of the said quantity, X is the
applied macroscopic stress. In Wapole’s notation, the effective compliance of the PST
crystal is written as M = [¢' g ¢ d' € p'] with

(M, + M) (M} + M)

/

C =
(1= 1) (M, + M) + f(M7} + M)
,_ ( — )M} + M{,)M7 + MM
(1= )M, + M) + (M} + M)
d = fM

(1 = AHFRME — M) + MM, + ML, — 2M7)] — (M1, + M) M3}

* (1= /) (M, + MDy) + 2/03

¢ = MMl + (1 — )M,
(o~ M) — )
FOdy = M) + (1= )], — MTy)

The stress concentration tensor P and the average stress of the homogenized y matrix
under any external stress can be evaluated from Egs. (1) and (2).

Analysis of yield stress for PST crystals

As shown in Fig. 1, in the global coordinate system, a tensile stress X,, is applied
parallel to x,, which can be written as X ={0 X» 0 0 0 O}T, 0 is the angle
between Y, and Xj, and Xj is parallel to the o,/ interface. It should be noted that in
the interfacial plane (111),, when 6 = 0°, either direction [1 IZ]V or [1 TO]Y may be
arranged parallel to the loading direction, so in the following, these two possibilities will
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be examined. The applied stress in the global system x;x,x; now is transformed to the
local X{X;X; coordinate system, this leads to

2 ={0 Xpcos’0 ZXypsin’0 —Xycosfsingd 0 0} (3)

For the considered PST crystal, the slip directions of the variants v,, v3, Y4, s, Y6 Can
be derived from those of the variant y; by multiplying a transformation matrix such as

{vi} = [T] - {v1},

cos(i-60°) sin(i-60°) 0
[T)] = | —sin(i- 60°) cos(i-60°) 0 (4)
0 0 1

In the previous subsection, the average stress in the homogenized y matrix was
evaluated. In order to analyze the slip characteristic of the variants, however, the stress
distributed in each variant must be determined. Owing to the presence of the ordered
domains in the y lamellae, it is impossible to determine these distributed stresses in an
exact manner. In the following, therefore, only two limit situations are considered: (1)
all variants in the y phase have a constant and equal stress, referred to as Reuss esti-
mation; (2) all variants in the y phase have a constant and equal strain, referred to as
Voigt estimation.

The average stress (g),, and the average strain (g),, in the homogenized y matrix were
already determined in the previous sub section. According to Reuss estimation, the
stresses in each variant of the y matrix are given by ¢ = = (g),,., (i = 1-6); and the stresses
in the variants is g,=Cy: (€),, if Voigt estimation 1S adopted where C,; is the stiffness
tensor of the vy phase in the global coordinate system for the ith variant.

If the normal vector of the slip plane is denoted by #n, and / denotes the slip direction,
the resolved shear stress can be evaluated by © = (g - n) - L. The yield stress of the PST

,’l
crystal is defined locally by the realization of Schmid criterion t = 7., in any slip sys-
tems, this enables one, together with the previous micromechanical analysis, to deter-
mine the yield stress of the PST crystal as a function of the loading angle 0.

Fig. 3a and b illustrate the computed yield stresses as a function of the loading angle
0 for the following two situations: (a) X} axis is initially parallel to [112]; (b) X} axis is
initially parallel to [110]. The computed yield stresses in Fig. 3a and b are normalized
by the yield stresses at 8 = 90° evaluated by each method, respectively, and the com-
parison with the experimental measurement [5] is also included in the figures.

It can be seen that Voigt estimation (constant strain in the variants) correlates well
with experiment, and predicts more significant variation of the yield stress as a function
of the loading angle 0 compared to Reuss estimation. The initial loading orientations
[110] or [112] have a minor influence on the final predicted result.

Table 2 gives the slip or twin systems when the critical external load is reached for the
different angles 0 for the case of loading direction parallel to [112].

The anisotropic behavior of the yield stress of PST crystals was usually explained on
the basis of the interactions between the slips and the interfaces or the o, plates. For
specimens with 0° < 0 < 90°, shear deformation on {111}, planes parallel to the
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Fig. 3. Yield stress of PST crystal as function of loading angle 6: (a) tension in [112], (b) tension in [1 10].

Table 2

Primary slip or twin systems at different angle 6
0 Slip system
0 yi(111)[011], v2(11T)[110], ys(1T1)[T01], ya(T11)[011], ys(111)[110], y6(111)[101]
/4 yi(111)[112], ya(111)[112]

/2 yl(lli)[l 12], yz(lli)[l 12], w(lli)[l 12], y4(11T)[1 12], y5(lli)[1 12], y(,(lli)[l 12]

lamellar interfaces in y plates is always preferred, because the critical resolved shear
stress for the slip systems in y-TiAl is lower than that for the slip systems in o,-TizAl
[15,16], and there is no barriers on the way for such a slip. Loading parallel or per-
pendicular to the lamellar planes causes slip and/or deformation twinning to occur on
{111}, planes across the lamellae. In such cases, the lamellar interfaces act as an ef-
fective barrier against propagation of the slip and/or twin through the interfaces. That
is why the yield stress for the specimens loaded parallel or perpendicular to the lamellar
interfaces is much higher than those for specimens loaded at intermediate angles of
0° < 0 < 90°.

The fact that Voigt estimation gives better prediction than Reuss estimation seems to
be supported by the experimental observation effectuated by Kashida et al. [17]. They
concluded that strain continuity at domain and lamellar interfaces are one of the most
important factors in determining the yield stress of PST crystals. In our modeling, Voigt
estimation assures indeed this continuity, and not for Reuss estimation.

It should be noted that in the computation, the slip characteristic of the o,-Ti; Al is
not considered in this preliminary study. The reason is that the critical resolved shear
stress for the slip systems in y-TiAl is lower than that for the slip systems in o,-TizAl. As
a result, y-TiAl plates always yield first and the o, lamellae do not deform at least at the
early stage of the yielding of the PST crystal. Therefore, the o, lamellae always play a
role as a strong barrier against propagation of the slip and/or twin through it. However,
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with further deformation, the deformation of the a, lamellae must also play a role in
controlling the behavior of the PST crystal. The large difference in the critical resolved
shear stresses for the prismatic slip and the pyramidal slip of the o, lamellae [16] may
contribute to the different strengthening effect for 0 = 0° and 0 = 90°. These effects
together with the strain hardening effect in the y phase will be considered in a further
report.

Conclusion

In this paper, we therefore propose an analytical approach based on a microme-
chanical method and dislocation theory to predict the yield stress of PST crystals. The
detailed domain microstructures of the y lamellae are taken into account. The results
show that the constant strain assumption in the different variants of the y phase gives
better correlation with the experiment.
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