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A coupled thermal–structural analysis based on the Euler–Bernoulli beam model is conducted within
a framework of Absolute Nodal Coordinate Formulation. The absorbed heat flux on the beam surface
depends on actual deformation and motion of the beam, therefore the coupled transient heat conduction
equation and structural dynamics equation are established and solved interactively by the generalized-α
scheme. Thermally induced vibrations for a thin-walled tubular boom subjected to a sudden heating in
order to simulate spacecraft’s exit from eclipse, and structure dynamics of a rotating flexible manipulator
in a thermal environment are examined in details. With the coupled thermal–structural analysis, the
thermal flutter can be well predicted for a cantilever beam moving from eclipse with large incident
angles of solar radiation, and the proposed model is also able to characterize the coupled thermal–
structural dynamics when a flexible beam is subjected to a large rotation. The developed model can
be served as a basic unit for analyzing thermal–mechanical coupling response of large flexible space
structures based on the Absolute Nodal Coordinate Formulation.

© 2013 Elsevier Masson SAS. All rights reserved.
1. Introduction

The thermal environment in earth orbit is around 100 ◦C on
sunlight surface, and as low as −100 ◦C on shadow side [17].
When a spacecraft enters into or exits from eclipse, thermally
induced oscillations may take place due to a sudden change in
heat flux of solar radiation. This rapid change in the thermal load-
ing produces a thermal moment across spacecraft appendage, this
thermal moment coupled in turn with structural deformation may
lead to unstable oscillation or thermal flutter of the structure [21,
23,25]. Thermally induced vibrations of flexible space structures
have been observed during the flight of the OGO-IV spacecraft
in the 1960s [21], and a pointing “jitter” was also found due to
thermally induced bending vibrations of the solar arrays when
the Hubble Space Telescope was moving from shadow to sun-
light [7].

These thermally induced vibrations were first addressed by Bo-
ley, and he established an uncoupled theory and identified the
ratio between the thermal response time and the structural re-
sponse time as a key parameter to characterize the occurrence of
these thermally induced vibrations [3]. Later, Thornton and Kim

* Corresponding author.
E-mail address: hugeng@bit.edu.cn (G. Hu).
1270-9638/$ – see front matter © 2013 Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.ast.2013.04.009
proposed a coupled thermal–structural analysis to demonstrate un-
stable thermally induced vibration (thermal flutter) of a spacecraft
boom [22]. Since then, these coupled thermal–structural vibrations
are examined by different analytical and computational methods
[14,24], and experiments in the earth environment have also been
conducted to validate simulations [6,15].

Large space structures are usually deployed in orbit from a
number of building units connected in a flexible way, there is a
great demand for efficient computational algorithms to simulate
their thermal and mechanical dynamic performances. The Abso-
lute Nodal Coordinate Formulation (ANCF) developed by Shabana
[19] can accurately model a deformable body with large defor-
mation and motion, and it is applied to characterize the deploy-
ment dynamics for antennas [16,18]. During the deployment pro-
cess, the building units will undergo large motion and rotation in
addition to deformation, therefore it is necessary to develop an
efficient computation method based on ANCF to analyze the cou-
pled thermal–structural behavior of such structure. The purpose of
this paper is to examine thermally induced bending vibrations for
a thin-walled tubular boom within the framework of ANCF, cou-
pled thermal–structural dynamics equations will be derived. The
developed model will be applied to examine the thermal effect in-
cluding thermal flutter for a spacecraft boom with or without large
rotation.
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Fig. 1. (a) Heat flux of coupled thermal–structural analysis. (b) Euler–Bernoulli beam
element in ANCF.

2. Coupled thermal–structural formulation

2.1. Structure dynamics with thermal effect

Consider a planar Euler–Bernoulli beam element in an actual
configuration, which is exposed to a heat flux S0 with an angle
θ to the normal of the neutral axis of the beam at a point p,
which is shown in Fig. 1a. Since the deformation of the beam will
alter absorbed heat flux S , therefore this will lead to a coupled
thermal–structural problem. To this end, we will first formulate
the structure dynamics problem with thermal effect. In this case,
the thermal effect is considered by introducing an average temper-
ature T̄ over the beam cross-section, and a thermal moment MT ,
which will be determined iteratively by the subsequent thermal
analysis explained in the next section.

As shown in Fig. 1b, a position vector r of an arbitrary point p
on the beam in ANCF is given by [2]

r = Ne, (1)

where N is the shape function of the Euler–Bernoulli beam ele-
ment, written as

N =
[

n1 0 n2l 0 n3 0 n4l 0
0 n1 0 n2l 0 n3 0 n4l

]
, (2)

and the components ni (i = 1,2,3,4) are given by

n1 = 1 − 3ξ2 + 2ξ3, n2 = ξ − 2ξ2 + ξ3,

n3 = 3ξ2 − 2ξ3, n4 = −ξ2 + ξ3, (3)

where ξ = x/l, l is the element length, and x is the element coor-
dinate.

In Eq. (1), the vector of element nodal coordinates e is defined
as

e = [
rT

∣∣ , rT
x

∣∣ , rT
∣∣ , rT

x

∣∣ ]T
, (4)
x=0 x=0 x=l x=l
where rT|x=0 and rT|x=l are the global displacements of the nodes;
rT

x |x=0 and rT
x |x=l are the global slopes at the nodes, with the defi-

nition rx = ∂r/∂x.
The kinetic energy of the beam element is defined as follows:

T = 1

2

∫
V

ρ ṙTṙ dV = 1

2
ėT

(∫
V

ρNTN dV

)
ė = 1

2
ėTMė, (5)

where M is a constant mass matrix and is expressed as

M =
∫
V

ρNTN dV , (6)

in which V is the element volume, ρ is the mass density.
For the Euler–Bernoulli beam, the longitudinal strain energy of

the element including thermal effect can be written as [4]

Ul = 1

2

l∫
0

E A
(
εl − εl

T

)2
dx, (7)

where E is the Young modulus, A is the cross-sectional area of
the beam, εl is the longitudinal strain, and εl

T is the longitudinal
thermal strain. Here, the thermally induced longitudinal strain εl

T
is written as

εl
T = αT (T̄ − T0), (8)

where αT is the coefficient of thermal expansion, T̄ is the average
temperature over the cross-section, and T0 is a reference tempera-
ture.

The longitudinal elastic force Ql is defined as [2]

Ql =
(

∂Ul

∂e

)T

= Kle, (9)

where the longitudinal stiffness matrix Kl can be written as

Kl =
l∫

0

E A
(
εl − εl

T

)
Nl dx = 1

2
E A

l∫
0

(
eTNle − 1 − 2εl

T

)
Nl dx, (10)

and Nl is written as

Nl = 1

l2
NT

ξ Nξ , (11)

where Nξ is the derivative of the shape function N with respect
to ξ .

The transverse thermal strain εt
T is usually small, therefore the

high order term (εt
T )2 will be neglected in the following analysis.

Thus, the transverse strain energy of the beam element with ther-
mal effect is given by

Ut = 1

2

∫
V

E
(
εt − εt

T

)2
dV ≈ 1

2

∫
V

Eε2
t dV −

∫
V

Eεt .ε
t
T dV

= 1

2

l∫
0

E I
(

K |rx|
)2

dx −
l∫

0

MT K |rx|dx, (12)

where εt is the transverse strain, I is the cross-sectional moment
of inertia, K is the material curvature and defined by [10]

K = |rx × rxx|
|rx|2 . (13)

In Eq. (12), the thermal moment MT is defined as [4]
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Fig. 2. Thermal model of a boom.
MT =
∫
A

E(αT �T )Y dA, (14)

where �T is the temperature difference along the beam’s cross-
section.

The transverse elastic force Qt is then obtained as

Qt =
(

∂Ut

∂e

)T

= Kt(e)e, (15)

where Kt(e) is the transverse stiffness matrix, and it is written as

Kt(e) = 1

2
E IK1 − MT K2, (16)

where

K1 =
l∫

0

4Nt
(eTNte)

(eTN f e)
− 2N f

(eTNt e)2

(eTN f e)2
dx, (17)

K2 =
l∫

0

2Nt
(
eTN f e

)−0.5 − N f
(
eTNt e

)(
eTN f e

)−1.5
dx, (18)

and

Nt = 1

2

(
N̄t + N̄T

t

)
, N̄t = 1

l3
NT

ξ

[
0 −1
1 0

]
Nξξ ,

N f = 1

l2
NT

ξ Nξ . (19)

According to Lagrange’s equation [20], the equation of motion
for the beam element is then derived as in a matrix form

Më + Qe + Qext = 0, (20)

where Qext is the generalized external forces, and Qe is the elastic
force and given by

Qe = Ql + Qt . (21)

Finally, Eq. (20) is solved iteratively by the generalized-α method
[1,5] when the temperature over the beam cross-section is known
in each incremental time step.

2.2. Thermal analysis

In this section, a spacecraft boom [21] is considered in order
to obtain the temperature field necessary for solving the structural
dynamics problem explained in Section 2.1. The boom is a thin-
walled tubular beam, which is shown in Fig. 2. In Fig. 2a, qs is
the absorbed heat flux of the thin-walled tube, and it is related to
the element surface absorptivity; qr is the outward radiation heat
Fig. 3. A differential tube element.

flux from the exterior tube surface. In Fig. 2b, S denotes the ab-
sorbed heat flux from the solar radiation, which is perpendicular
to the global slope of the tube rx , and it can be determined by the
current configuration of the beam, as illustrated in Fig. 1a. In the
coupled thermal–structural analysis, the heat flux qs is related to
the structural deformation by

qs = αs S = αs S0 cos θ, (22)

where αs is the surface absorptivity of the tube, S0 is the value of
the solar radiation, and θ is the intersection angle between the
solar radiation heat flux S0 and the absorbed heat flux S (see
Fig. 1a). θ is derived from the global slope rx and the incident
angle β of the solar flux, once the deformation of the beam is
evaluated.

For the thermal analysis of the thin-walled tube, the following
assumptions are made [12,21]: the temperature gradient is ne-
glected along the wall thickness due to small wall thickness h; the
heat convection is also neglected because of high vacuum and low
pressure space environment; the radiation heat exchange amongst
internal surfaces is neglected for the thin-walled tube, and finally
thermal properties of the thin-walled tube are assumed to be tem-
perature independent.

To proceed, a differential tube element in circumference is
adopted to establish the heat transfer equation at each cross-
section, as shown in Fig. 3. qin and qout are the heat flux conducted
into and heat flux conducted out of the tube element, respectively.
According to the first law of thermodynamics, the thermal govern-
ing equation is derived as

∂T

∂t
− k

ρcR2

∂2T

∂ϕ2
+ σε

ρch
T 4 = αs S

ρch
δ cosϕ, (23)

where k is the thermal conductivity, R is the radius of the tube,
and c is the specific heat, σ is the Stefan–Boltzmann constant, and
ε is the emissivity of the external tube surface. The parameter δ

is used to define the external surface of the tube in which suffers
the solar radiation:

δ =
{

1, −π/2 < ϕ < π/2,

0, π/2 < ϕ < 3π/2.
(24)
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Fig. 4. Finite element discretization of the tube semi-cross-section.

On the right-hand side of Eq. (23), S is the value of the heat
flux projected normally to the external surface of the tube, and it
varies along the tube length due to the beam deformation. So the
temperature T (X,ϕ, t) depends on X and ϕ . Therefore, Eq. (23)
describes a nonlinear transient heat transfer problem, and it can
be solved by a finite element method after discretization of the
structure [11],

CṪ + (Kc + Kr)T = Rq, (25)

where Ṫ = ∂T/∂t , and T is the unknown nodal temperature, the
coefficient C is the element capacitance matrix, the coefficients
Kc and Kr are element conductance matrices related to conduc-
tion and radiation, respectively. The vector Rq is the heat load-
ing vector due to surface radiant heating, and it is related to the
structural deformation. Due to the symmetry, the finite element
discretization for the tube semi-cross-section is shown in Fig. 4,
one-dimensional two node element is used. In a local element co-
ordinate, the element shape functions are given by

NT ,1(xs) = 1 − xs

Ls
, NT ,2(xs) = xs

Ls
, (26)

where xs is the element local coordinate along the circle, and Ls is
an element arc-length. Therefore, the coefficients in Eq. (25) for a
two node element are obtained by [11]

C = ρchLs

6

[
2 1
1 2

]
, Kc = kh

Ls

[
1 −1

−1 1

]
,

Rq = qsLs

2

[
1
1

]
, (27)

Kr = σεLs

60

×
[

10T 3
1 + 6T 2

1 T2 + 3T1T 2
2 + T 3

2 2T 3
1 + 3T 2

1 T2 + 3T1T 2
2 + 2T 3

2

2T 3
1 + 3T 2

1 T2 + 3T1T 2
2 + 2T 3

2 T 3
1 + 3T 2

1 T2 + 6T1T 2
2 + 10T 3

2

]
,

(28)

where T1 and T2 are the nodal temperatures.
The coupled thermal–structural analysis is performed by solving

interactively the nonlinear equations (25) and (20) in each time
step.

2.3. Validation

A simply supported rectangular beam of length L and height hr
under a constant heat input Q on the top surface with the bot-
tom surface insulated is examined to validate the proposed model
based on ANCF, as shown in Fig. 5. Only heat conduction is consid-
ered in this thermal analysis. The thermal–structural property and
the temperature field of the beam are given in Ref. [4].

The non-dimensional mid-span transverse displacement V =
π4kv/(192Q αT L2) is evaluated by the proposed method and it is
also compared with Boley’s result [4]. The comparison results are
Fig. 5. Rectangle beam subjected to surface heating.

Fig. 6. Non-dimensional mid-span transverse displacement as a function of time.

shown in Fig. 6, where τ = κT t/h2
r is a non-dimensional time pa-

rameter, κT is the thermal diffusivity, t is the time, and v is the
transverse displacement. A good agreement between two methods
is found, so in the following the proposed model in Section 2 will
be used to examine thermally induced vibrations of a spacecraft
boom with or without a large rotation.

3. Numerical results and discussions

3.1. A cantilevered thin-walled tube

A cantilevered thin-walled tube with a tip mass rest at initial
horizon position is considered by the proposed method, which is
shown in Fig. 7. The solar heat flux S0, approximately 1350 W/m2,
is suddenly imposed on the tube with an incident angle β . The
black body radiating temperature of the space environment is con-
sidered as 0 K in the thermal analysis, and the initial temperature
T0 is set to be 290 K for the thin-walled tube. The other parame-
ters are listed in Table 1 [13]. The makeup of the tip mass is also
shown in Fig. 7, which is a viscous-fluid damper [25]. Thus, in the
structure, the damping force is only supplied by the tip mass and
the damping due to material is neglected. Therefore the damping
force is included in the generalized external forces of the tip ele-
ment as

Qext = 2ζω0
(
mNT

ξ=1Nξ=1
)
ė, (29)

where ζ is the damping ratio, and ω0 is the first mode natural
frequency [21]. If the damping effect of material is considered, the
formulation given in Ref. [9] should be used.

According to Thornton and Foster [21], the thermal flutter takes
place if the non-dimensional parameters satisfy the following con-
dition:

η >
2ζ + 4ζ 2 + 2ζλ. (30)

λ
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Fig. 7. The structure model of a spacecraft boom.

Table 1
Properties of the thin-walled tube.

ρ (kg/m3) h (mm) R (mm) L (m) E (GPa) m (kg) c (J/(kg k)) k (W/(m K)) αT (1/K) αs ε

8026 0.203 9.53 7.5 152.18 1.5 502 16.6 1.69 × 10−5 0.5 0.13
Fig. 8. Tip displacement for the coupled unstable response.

These non-dimensional parameters are defined as

η = 3

4

L

2R
αT T ∗ sin θ, λ = 1

ω0γ
, (31)

where

1

γ
= k

ρcR2
+ 4σε

ρch

(
αs S0 cos θ

πσε

) 3
4

, T ∗ = 1

2

αs S0

ρch
γ . (32)

Fig. 8 shows the thermally induced vibration of the tip mass on
the boom for β = 80◦ and ζ = 0.0001 where thermal flutter takes
place according to Eq. (30), the non-dimensional time parameter is
defined as τ ′ = ω0t , the predicted vibration response indeed be-
comes unstable in this case. The predicted vibration response is
also compared with the analytical result given by Thornton and
Foster [21], once again it is showed that the prediction based
on the ANCF agrees well with that based on the analytical solu-
tion for the coupled thermal–structural analysis. Additionally, Fig. 9
shows the predicted vibration response for β = 0◦ and ζ = 0.0001
where the response is stable by condition (30). Again the proposed
model based on the ANCF can well predict this coupled thermal–
structural analysis and agrees well with the analytical solution. It
can be found that the structural stability is related to the solar
incident angle β , and when the solar incident angle is decreased,
the tip displacement is increased because of the increase of the ab-
sorbed heat flux S which leads to the increase of thermal moment
MT in the thin-walled tube.
Fig. 9. Tip displacement for the coupled stable response.

Fig. 10. Tip displacements for coupled and uncoupled analysis.

Fig. 10 shows the predicted responses of the boom with the
coupled and uncoupled thermal–structural models based on the
ANCF, it is seen that the uncoupled thermal–structural model pre-
dicts always stable response even in the case where thermal flut-
ter occurs. In the uncoupled thermal–structural analysis, the ab-
sorbed heat flux is independent of the structural deformation, the
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Fig. 11. A rotating manipulator under thermal radiation.

Fig. 12. Deformation of a rotating manipulator at different instants.

coupling between thermal and structural response can’t be taken
into account.

3.2. A rotating flexible manipulator

To further demonstrate capacity of the proposed model, a ro-
tating flexible manipulator in a thermal environment will be ex-
amined. The manipulator drives a 3 m long thin-walled tube with
a tip mass 1.5 kg to rotate at a speed ψ̇(t) in the space environ-
ment, which is shown in Fig. 11, and the other properties of the
thin-walled tube are the same as those given in the first exam-
ple. When the flexible manipulator starts to rotate and deform (see
Fig. 12), there may exist a situation where one part of the manip-
ulator will shadow the another if the beam is too flexible. This
situation is not considered in our analysis by assuming that the
transverse deflection is relatively small compared to the length of
the manipulator. The angle of rotation is assumed to be the fol-
lowing form [8]:

ψ(t) =
{

Ω
T [ t2

2 + ( T
2π )2(cos 2πt

T − 1)], t < T ,

Ω(t − T
2 ), t � T ,

(33)

and T = 15 s; two values of Ω = 2 rad/s, 4 rad/s are considered.
Firstly, the influence of the number of elements is examined,

Fig. 13 shows that the computation with 6 elements is enough
to give a steady prediction, and it will be used in the following
analysis. The angle between the solar radiation heat flux vector S0
and the tangent vector of the neutral axis of the deflected beam rx

changes with time due to the deformation and rotation of the tube.
Fig. 14 shows the normalized tip deflections as a function of nor-
malized time for the angular velocities Ω = 4 rad/s and 2 rad/s
with two initial incident angles β = 0◦ and 80◦ , respectively. It is
shown that the thermal effect may have an important influence on
dynamic response of the manipulator, which is due to the fact that
the thermal moment induces a bending deformation for the thin-
walled tube. The initial incident angle has little influence on the
structural dynamics since the tube is rotated in the space, as ex-
pected. As the angular velocity is decreased, the thermal radiation
effect becomes relatively pronounced because of the reduction of
the deflection due to inertia effect, as shown in Fig. 14.
Fig. 13. Tip deflection of a rotating manipulator computed with different elements
without thermal load (Ω = 4 rad/s).

(a)

(b)

Fig. 14. Tip deflection of the rotating manipulator. (a) Ω = 4 rad/s. (b) Ω = 2 rad/s.
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(a)

(b)

Fig. 15. Tip deflection of the rotation manipulator. (a) Ω = 0.25 rad/s. (b) Ω =
0.1 rad/s.

Another motor motion of 1.0 rad at a speed of ψ̇(t) is also
examined, and the angle of rotation is written in the following
form:

ψ(t) =
{

sin(Ωt), t < T ,

1, t � T ,
(34)

and T = π/2Ω with Ω = 0.1 rad/s, 0.25 rad/s, respectively.
The manipulator drives also a 3 m long thin-walled tube, but

the tip mass is now 0.15 kg. The other properties of the tube re-
main the same as in Table 1.

In this case, only the top surface of the tube is suffered solar ra-
diation during the motion since the tube is fixed after a motion of
1.0 rad. Different initial incident angles and the responses without
thermal loading are also examined and illustrated for comparison.
Again, the effect of the initial incident angle is not significant due
to the rotation of the tube, and for small angular velocity, the ther-
mal effect is relatively more pronounced due to the small deflec-
tion amplitude caused by low angular velocity, these are shown in
Fig. 15. From these results, it is seen that considering the thermal
effect is necessary to give an accurate prediction on the manipula-
tor dynamics in the space environment.
4. Summary and conclusions

Space deployable structures are subjected to sudden heating
when they move from ellipse, and during the deployment process
the building unit will also undergo a large rotation and motion in
addition to deformation. To analyze the impact of thermal loading
on such structure with large motion and rotation, we proposed a
beam model with coupled thermal effect in a framework of abso-
lute nodal coordinate formulation. The coupled transient heat con-
duction equation and the structural dynamics equation are derived
and solved iteratively. The proposed model is applied to examine
the dynamics of a thin-walled tubular boom and a rotating flexi-
ble manipulator with thermal effect. It is shown that the thermal
flutter can be well predicted with the coupled thermal–structural
model and the thermal effect may have an important impact on
dynamic response of the rotating flexible manipulator especially
for low rotation speeds. The proposed model can be applied to
study the influence of thermal effect on flexible multi-body dy-
namics.
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