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Design of functional devices with isotropic materials has significant advantages, as regards easy
fabrication and broadband application. In this letter, we present a method to derive isotropic
transformation material parameters for elastodynamics under local conformal transformation. The
transformed material parameters are then applied to design a beam bender, a four-beam antenna and
an approximate carpet cloak for elastic wave with isotropic materials, validated by the numerical
simulations. © 2011 American Institute of Physics. �doi:10.1063/1.3569598�

Transformation method provides a direct way to find
material parameter distributions when wave propagation pat-
tern is prescribed, and many interesting devices for electro-
magnetic �EM� waves are conceived1–4 based on this tech-
nique. The method is also extended to acoustic wave for
liquid materials, since the Helmholtz’s equation is shown to
have a transformation type solution.5,6 An acoustic cloak has
recently been demonstrated experimentally by Zhang et al.7

Based on assumption of local affine transformation, Hu et
al.8 derived the transformed material parameters for elastic
wave. Generally, the material derived by transformation
method is anisotropic, thus some material parameters have to
be realized with local resonant mechanism.4,9,10 For easy fab-
rication and broadband application, devices with isotropic
materials are in great demand. Along this vein, Leonhardt2

proposed conformal mapping for transformation optics and
acoustics with isotropic media in two-dimensional �2D� case.
Li and Pendry11 suggested quasi-conformal mapping to de-
sign a carpet cloak for EM waves; the proposed device can
be made of isotropic materials, and this greatly simplifies the
experimental implementations.12,13 Conformal mapping is
also applied to design directional antennas for EM wave14

and acoustic wave15 with isotropic materials. In this letter,
we will explore this possibility for elastic wave. First, the
transformed material parameters for elastic wave under local
conformal mapping are derived; they are then applied to de-
sign a beam bender, a directional antenna, and an approxi-
mately carpet cloak with isotropic materials.

We start by considering an elastodynamic problem in a
virtual space described by Navier’s equation

� · � = � · ü, � = C:�u , �1�

where u denotes displacement vector, � is second order
stress tensor, C is fourth-order elasticity tensor and � means
density. For a general spatial mapping x�=x��x� that trans-
forms the virtual space to a physical space, Milton et al.16

show that Navier’s equation cannot keep its form. However,
if we consider the transformation in a local view and adopt
locally an affine transformation point by point, the trans-
formed governing equation can still keep its form, i.e., Navi-
er’s equation, and the transformed material parameters for
elastic wave can be derived.8 With assumption of local affine

transformation for a mapping, the deformation gradient ten-
sor induced by the mapping A=�xx� can be decomposed as
A=VR, where R and V denote a rigid rotation and a pure
stretch tensor, respectively.17 A local Cartesian frame e� at a
point x� is established in the physical space, which is the
principal frame of V �V=�1e1� � e1�+�2e2� � e2�+�3e3� � e3��.
During the mapping, the stress, displacement, stiffness and
density attached on a spatial element at the point x in the
virtual space will experience a rigid rotation R and then scal-
ing along e� to reach the point x� in the physical space.
Symbolically the transformations can be written as8

VqR:q � q�, q = �,u,C,� , �2�

where Vq is the scaling tensor for the quantity q, and has a
diagonal form in the specially established frame e�, i.e.,

V� = diag�a1,a2,a3�,Vu = diag�b1,b2,b3�,VC

= diag�c1,c2,c3�,V� = diag�d1,d2,d3� , �3�

where ai, bi, ci, and di are scaling factors for stress, displace-
ment, stiffness, and density, respectively, which are to be
determined. With local affine transformation, the form-
invariance of Navier’s equation and conservation of energy
at each point lead to the following conditions for determining
the scaling factors8

aiaj

dJbJ
= �i,

aiaj

cIcJcKclbk
=

1

�l
, aiajbI =

� j

�1�2�3
. �4�

The capital letter in the index means the same value as its
lower case, but without summation.

We further consider a local conformal mapping at each
point, i.e., �1=�2=�3��, then the scaling tensor Vq be-
comes isotropic, and Eq. �4� becomes

a2

bd
= �,

a2

c4b
=

1

�
, a2b =

1

�N−1 , �5�

where N=2,3 for 2D and three-dimensional problems, re-
spectively. Obviously, there are nonunique solutions for the
scaling factors a, b, c, and d when � is given. We can express
three of them in terms of the rest one and � for example, b
=1 / �a2�N−1�, c4=a4�N, d=a4�N−2. Since the density � and
the modulus tensor C in the virtual space are isotropic, the
transformed material parameters are finally derived in the
global frame as
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C� = a4�NC,�� = a4�N−2�,�� = a2R�RT,u�

= a−2�1−NRu . �6�

Equation �6� provides the transformed material parameters
for a local conformal transformation, and both modulus and
density are isotropic in the physical space. We shall apply the
transformed material parameters to design three functional
devices with isotropic materials in the following: a beam
bender, a directional antenna and an approximate carpet
cloak.

A 2D beam bender is designed by a mapping that trans-
forms a rectangular plate into a plate of an arc shape. The
conformal transformation is made by setting the stretch

along r̂ equal to that along �̂ at each point, as used to design
isotropic EM bender,18 and the stretches are finally given by

�r = �� = � = �r/�ka� , �7�

where � is polar angle, a is original length of the rectangular
plate and k has arbitrarily nonzero real value, as shown in
Figs. 1�a� and 1�b�. Different from EM wave, special care
must be taken to assure the impedance-matched condition
between the transformed and the untransformed regions. For
perpendicularly incident waves, the impedance-matched con-
dition for both S and P waves is given as19

��C� = �C . �8�

With help of Eq. �6�, the impedance-matched transformed
material parameters are derived as C�=�C, ��=� /�, or

E� = �E, �� = �, �� = �/� , �9�

where E and � denote Young’s modulus and Poisson’s ratio
of the media, respectively. To validate the transformed mate-
rial parameters for the bender, numerical simulations are per-
formed with the structural mechanics module of finite ele-
ment method software COMSOL MULTIPHYSICS, where a beam
of a P-wave or S-wave is incident on the bender. The back-
ground is the structural steel with material parameters E
=200 GPa, �=0.33, and �=7850 kg /m3. The simulation re-
sults on wave propagation pattern are shown in Figs. 1�c�
and 1�d� with frequency 20 kHz and �=� /2, a=3 m, k
=� /3 for P-wave and S-wave, respectively. They show
clearly that the waves are guided to a new direction as de-
sired.

Directional four-beam antenna for elastic wave with iso-
tropic material can be realized by Schwartz–Christoffel con-
formal transformation, defined by14,15

w = � · 2i · F�i · sinh−1�	i
1 + z

1 − z
− 1
−1/2��2 + 	 , �10�

where w=x�+ iy�, z=x+ iy, and F�
 �m� denotes the incom-
plete elliptic integral of the first kind with modulus m, the
coefficients �=−�2+2i� / �2K�−1�+ i�2K�1 /2��, 	=−1+ i,
where K�
� is the complete elliptic integral of the first kind.
This mapping converts a cylindrical wave into plane ones.
Once the transformation �shown in Figs. 2�a� and 2�b�� is
provided, the local principal stretch � can be then evaluated,
and the materials to realize this function are obtained through
the transformations given by Eq. �9�. In the numerical simu-
lation, the conformal transformation is generated using MAT-

LAB toolbox developed by Driscoll.20 A line source of
P-wave or S-wave is generated in the center of the antenna.
The background is the same as that used in the beam bender.
During the conformal transformation, singularities are
formed at the intersection of the edges of the device, and
they are set to a finite large value in the numerical simula-
tion, as in the references.14,15 Figures 2�c� and 2�d� show the
wave patterns for the P-wave and S-wave, respectively. In-
deed, a cylindrical wave is transformed into four plane wave
beams, as designed. For acoustic wave, the stiffness tensor is
characterized only by bulk modulus, and the transformed
material parameters proposed by Ren et al.15 can be obtained
as a special case.

Finally, we will apply the isotropic material parameters
to design approximately an elastic carpet cloak. The method
proposed by Chang et al.21 is used to design the elastic carpet
cloak. Since the stretches and impedance-mismatch near the
upper and side boundaries of the cloak are very small, we
can further simplify the material parameter by assuming con-
stant density or constant modulus. For constant density, we
have a4=1 /�N−2 from Eq. �6�, and the following transformed
material parameters can be derived:

E� = �2E, �� = �, �� = � . �11a�

For constant modulus, we get

FIG. 1. �Color online� Transformation for a beam bender: �a� virtual space
and �b� physical space. Total displacement �ux

2+uy
2 for �c� P-wave and �d�

S-wave in the bender. FIG. 2. �Color online� Transformation for the directional four-beam an-
tenna: �a� virtual space and �b� physical space. Total displacement �ux

2+uy
2

for �c� P-wave and �d� S-wave incident from the center of the antenna.
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E� = E, �� = �, �� = �/�2. �11b�

In order to validate the transformed material parameters, an
elastic carpet cloak is designed by using Eq. �11a�. The back-
ground is set to be the same as that of the beam bender.
Harmonic waves including both P-wave and S-wave are
emitted from a line source, as shown in Fig. 3�a�. Figure 3�c�
shows that through the isotropic carpet cloak, the scattering
of an incident wave by a curvilinear boundary is the same as
that by a linear boundary �Fig. 3�a�� if observed outside the
cloak. Compared to the anisotropic elastic carpet cloak8

shown in Fig. 3�d�, the approximate isotropic carpet cloak
works perfectly well. In our example, the anisotropy factor11

is about 1.07. The same result can also be found for a carpet
cloak designed with Eq. �11b�. It is worthwhile to point out
that the curvilinear boundary not only affects the reflection
direction, but also the mode of the reflected wave due to the
mode conversion at the boundary.19 However, the designed
carpet cloak can restore both the mode and the propagation
direction.

To conclude, the isotropic transformed material param-
eters for elastic wave under local conformal mapping are
derived, which are then applied to design some interesting

devices for elastic wave with isotropic materials, including a
beam bender, a four-beam antenna. We also show that the
isotropic transformation material parameters can also be ap-
plied to design carpet cloak with a good approximation.
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FIG. 3. �Color online� Wave �both P-wave and S-wave� incidents on the �a�
linear and �b� curvilinear boundaries without the carpet cloak. Wave inci-
dents on the curvilinear boundaries with the �c� isotropic and �d� anisotropic
carpet cloak.
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