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a b s t r a c t

Under tension or tension/torsion combined loading, the formation and movement of macroscopic in-

terfaces (domain fronts which separate the austenite and martensite regions) in the phase transition

of a bulk fine-grained polycrystalline NiTi shape memory alloy (SMA) bar or tube specimen are well-

observed phenomena. The interfacial energy of the macroscopic domain front, i.e., the energy per unit

area of the front (interface), competes with the bulk energy of the system and plays an important

role in understanding and modeling both equilibrium and non-equilibrium domain patterns. This pa-

per investigates the physical origin of the interfacial energy of a planar interface and its orientation and

length scale dependences in a bar structure. The energetics of a martensite domain with such a pla-

nar interface is quantified by using an elastic inclusion model. We show that the strain energy due to

the presence of the martensite domain consists of two parts, the bulk energy (such as from bending) due

to the constraints at the bar ends and the localized energy due to the mismatch between the spontaneous

transformation strain of the domain and the surrounding austenite. The latter is stored around the domain

front and is named as the interfacial energy (domain front energy). It is proved that the interface or the do-

main front of the bar prefers the orientation that minimizes the system total energy. This is supported by

comparison with the experimental observation. The dependences of the interfacial energy on the bar geom-

etry (bar thickness and width), the transformation strain and the interface orientation are quantified.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

The interfaces and their motion are widely observed in phase

ransformations in metals and ceramics such as the formation of den-

rites in supercooled liquids (the molten material) and precipitates

n alloys. The formation of interface takes place by a nucleation pro-

ess of a new phase from its parent phase. The interfacial energy, i.e.,

he energy per unit area of the interface, is one of the most impor-

ant quantities that affect the development of morphology and evolu-

ion of microstructure (Porter et al., 2009). For example, the variation

f interface configuration (i.e., its orientation and area) and there-

ore the energy provides the driving force for many important kinetic

rocesses of structure changes such as the formation of equilibrium

icrostructures, from twin structures, the shape of a grain to the

acroscopic domain patterns in a polycrystal. NiTi shape memory al-

oy (SMA) is a typical material which can undergo diffusionless and
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E-mail address: meqpsun@ust.hk (Q.P. Sun).

t

a

l

fi

ttp://dx.doi.org/10.1016/j.ijsolstr.2015.10.006

020-7683/© 2015 Elsevier Ltd. All rights reserved.
isplacive martensitic phase transformation and has many impor-

ant applications. Extensive experimental researches have been per-

ormed on the deformation behavior of fine-grained polycrystalline

iTi SMAs (among many others, see Shaw and Kyriakides, 1997, 1998;

haw, 2000; Zhang et al., 2010; Zhou, 2011 for bars, and see Li and

un, 2002; Sun and Li, 2002; Feng and Sun, 2006; Zhou, 2011; Zhou

nd Sun, 2011 for tubes). For superelastic NiTi bars and tubes under

tretching, a basic phenomenon of the deformation is the collective

nd localized phase transformation of the material and the resultant

ormation of macroscopic deformation domains as shown in Fig. 1.

he low-strain (austenite) and high-strain (martensite) regions are

eparated by “sharp” interfaces (domain fronts) which orientate at

bout 35° to the transverse axis in a bar (see Fig. 1(a)) and at the

iddle part of the helix in a tube (see Fig. 1(b)). The high-strain do-

ain consists of almost fully transformed grains whose statistical av-

rage transformation strains are 5% in axial direction and −2.5% in

he other two directions (Li and Sun, 2002; Feng and Sun, 2006). The

forementioned interface orientation corresponds to the “invariant-

ine” on the bar or tube surface along which there is no in-plane mis-

t. Due to strong incompatibility of the deformation, the interface
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Fig. 1. Domain morphology and the interface (domain front) orientations in ultrafine-

grained polycrystalline shape memory alloys under tensile stress: (a) the parallelogram

domains in a strip geometry, (b) the helical domains in a tube geometry, (c) a cylindri-

cal domain with branched fronts in a tube geometry.

Fig. 2. Multi-scale structure of the interface (domain front) of a macroscopic domain

and the material hierarchy of the domain front therein.
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orientation may also deviate from the “invariant-line” for the two

end-tips of the helix (see Fig. 1(b)) and for the branched fronts (see

Fig. 1(c)) in tubes. Preliminary researches show that the interfacial

(domain front) energy plays an important role in determining the in-

terface orientation. However, how to quantify the interfacial energy

of the macroscopic domain and its orientation dependence still re-

main unsolved issues.

Although great advances have been achieved in modeling the in-

terface and the interfacial energy at micro-scale (among many liter-

atures, see Cahn and Hilliard, 1958; Khachaturyan, 1983; Roitburd,

1998; Maciejewski et al., 2005), relatively much less is known about

the interfacial energy of the macroscopic domain in polycrystals. The

key issues in understanding and modeling the macroscopic inter-

face in bulk polycrystalline NiTi SMAs are the definition of interfa-

cial energy in polycrystals, its physical nature and its orientation de-

pendence. The formation of macroscopic interphase interfaces can

be understood as follows. During stretching, the strong interactions

among the phase transformation events of grains lead to the collec-

tive behavior of phase transition and the self-organization of these

grains into a macroscopic domain (see Fig. 2). In terms of continuum

mechanics, the deformation process of the material during phase

transition involves intrinsic material instability at different length

scales with complicated microstructure evolution. At the micro-scale,

the crystal structure changes abruptly from a high-symmetry cubic

lattice to a low-symmetry monoclinic lattice (Bhattacharya, 2003;

see Fig. 2(e)). This cubic to monoclinic transformation leads to the

twinned structures of martensite and forms an interface separating

the twinned martensite from the parent lattice. Such interface of

nanometer to micronmeter thickness is called the habit plane (see

Fig. 2(c) and (d)). At the meso-scale, the microstructure of martensite

has essential features related to crystallographic orientation. The mi-

crostructure of one grain can be very different from the neighboring
nes (see Fig. 2(b)). As the misfit presents, the formation of coher-

nt interfaces raises the free energy of the system due to the elastic

train fields that arise. There is competition between the microstruc-

ure that each grain wants to form and the constraints that are im-

osed by the surrounding grains. In other words, the microstruc-

ure in one grain can affect the microstructure in another grain. As

consequence, a macroscopic interface (domain front) is formed at a

ength scale from a few microns to a few millimeters (see Fig. 2(a)).

n previous works (Dong and Sun, 2009; He and Sun, 2009a, 2009b,

010) the interface was treated to be a mathematically sharp sur-

ace and the interfacial energy was assumed to be a material con-

tant. Later it was found that the interfacial energy (domain front en-

rgy) is mainly due to the transformation strain along the bar thick-

ess or tube wall-thickness direction (He and Sun, 2009c; Dong and

un, 2012) and the interfacial energy is linearly proportional to the

ar thickness or wall-thickness. However, a more rigorous theoretical

nalysis based on analytics or numerical simulation is still missing.

herefore, it is of great interest for us to take the thickness effect into

ccount and to systematically quantify the interfacial energy.

In general, similar to those for a microscopic interface, two mod-

ling approaches of local (inclusion) model and nonlocal (gradient)

odel can be used to describe a macroscopic interface in NiTi SMAs.

n the local (inclusion) model, the interface is taken as a mathemat-

cally sharp surface across which the strain suffers a jump from the

ow-strain (austenite) phase to the high-strain (martensite) phase

Dong and Sun, 2009). The interfacial energy density (per unit area)

ontains a length scale that is a measure of the physical thickness of

he interface and is assumed to be evenly assigned to the whole inter-

acial area. In the nonlocal (gradient) model, the strain changes con-

inuously but rapidly from high-strain to low-strain regions and the

nterfacial energy is in fact a bulk energy of the rapid transition re-

ions which can be accounted for by a strain-gradient term in the en-

rgy function (Cahn and Hilliard, 1958; Cahn, 1961; Falk, 1983; He and

un, 2009a, 2009b, 2010). In this gradient energy, a material length

s introduced and used to describe the length scale of microstruc-

ure features such as the interface thickness at micro- or nano-scale.

t is clear that both local and nonlocal approaches have clear physi-

al meanings but are mathematically different. The nonlocal model

as become a preferred method to describe complex domain pat-

erns due to its computational advantages (e.g., no singularity and no

esh-dependence), but in understanding basic phenomena like the

nterfacial energy, the local model has advantage due to its simplicity.

The objective of this paper is to study the interface structure and

o define the interfacial energy of macroscopic domains in polycrys-

alline NiTi shape memory alloys by using a local (inclusion) model.

e focus on the energetics of a martensite domain with a single pla-

ar interface in bars of different length, width and thickness and aim

o clarify the physical origin of the interfacial energy and quantify

ts length and orientation dependence. The paper is organized as fol-

ows. In Section 2, the physical origin of interfacial energy is discussed

y an analysis of strain compatibility at the interface (domain front).

n Section 3, the equilibrium (or energy minimized) domain and its
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Fig. 3. Model for defining strain compatibility on an interface (A for austenite and M

for martensite).
nterface orientation are determined by means of finite element com-

utation and compared with experimental data. In Section 4, the ap-

roximate expression of interfacial energy is derived and its length

ependence is quantified. In Section 5, the orientation dependence

f interfacial energy is discussed. The summary and conclusions are

iven in Section 6.

. Strain mismatch and interfacial energy

During the phase transformation of polycrystalline NiTi shape

emory alloys, the formation of new martensite phase in some

acroscopic region of initial austenite phase is accompanied by a

hange in the shape of this region, which can be represented by a

ymmetric transformation strain εp
i j

. Due to the constraint of the ini-

ial phase, the new phase tends to choose a certain preferred shape

nd orientation (Roitburd, 1969, 1974, 1978; Boyko et al., 1994). In

his section, we shall present the strain mismatch between these two

hases and the resultant interfacial energy.

The problem consists of finding displacement ui, strain ɛij and

tress σ ij at an arbitrary point xi inside the solid. The total strain ɛij
s regarded as the sum of elastic strain εe

i j
and transformation strain

p
i j

,

i j = εe
i j + εp

i j
, (1)

here εi j = (ui, j + u j,i)/2 with ui, j = ∂ui/∂x j .

We assume that during the phase transformation the displace-

ents at all points of the solid are continuous and the total strains

re compatible. The condition of compatibility of strains at any point

nside the solid (St. Venant condition) can be expressed in the follow-

ng form (Roitburd, 1978; Mura, 1987; Boyko et al., 1994):

i j = eilme jpqεmq,l p = 0, (2)

here eilm is the permutation tensor. The tensor Rij is known as the

ncompatibility tensor.

The gradient term ɛmq, lp is continuous inside each phase but dis-

ontinuous at the interface between the two phases. The jump across

he interface can be written as

εmq,l p] = εmq,l p(austenite) − εmq,l p(martensite) = [εmq]nlnp, (3)

here [εmq] = εmq(austenite) − εmq(martensite) is the jump magni-

ude of the total strain and nl is a unit vector along the normal to the

nvestigated part of the interface.

For those points located at the interface, the strain compatibility

ondition in Eq. (2) can be shown as:

Ri j

]
= eilme jpq[εmq]nlnp = 0. (4)

Substituting Eq. (1) into Eq. (4), we have

Re
i j

]
= eilme jpq

[
εe

mq

]
nlnp = eilme jpqε

p
mqnlnp, (5)

ith

[Re
11] = εp

33
n2

2 + εp
22

n2
3 − 2εp

23
n2n3,

Re
22] = εp

33
n2

1 + εp
11

n2
3 − 2εp

13
n1n3,

Re
33] = εp

22
n2

1 + εp
11

n2
2 − 2εp

12
n1n2,

[Re
12] = [Re

21] = −εp
33

n1n2 − εp
12

n2
3 + εp

13
n2n3 + εp

23
n1n3,

[Re
13] = [Re

31] = −εp
22

n1n3 + εp
12

n2n3 − εp
13

n2
2 + εp

23
n1n2,

Re
23] = [Re

32] = −εp
11

n2n3 + εp
12

n1n3 + εp
13

n1n2 − εp
23

n2
1.

A simple geometrical interpretation may be given to Eq. (4). The

reservation of the coherence on the interface means that each vec-

or Xj that connects some two points on the interface before the phase

ransformation passes into the same vector after the phase transfor-

ation, regardless with which contacting phase it is considered to

elong, i.e.,

ui, j

]
Xj = 0, (6)
here ui, j is the displacement gradients (total distortions) of the con-

acting phases relative to the initial single-phase state. If we consider

plane interface element with the normal nj, then Xjn j = 0 and the

equirement for the preservation of the contact in Eq. (6) is fulfilled if

ui, j

]
= sin j, (7)

here si is the magnitude of the jump to be determined. [ui, j] de-

cribes the distortion with an invariant plane. All the planes with the

ormal nj are not distorted since the displacements in each plane are

he same, ui = six, x being the distance of the plane from the inter-

ace. Under the condition in Eq. (7), the relative strain of the contact-

ng phases is reduced to a simple shear and a normal displacement of

he stack of planes parallel to the interface.

The compatibility preservation condition in Eq. (7) can be reduced

o definite restrictions on permissible strain discontinuity and disori-

ntation:

εi j

]
=

[
εe

i j

]
− εp

i j
= 1

2

(
sin j + s jni

)
, (8)

ωi j

]
=

[
ωe

i j

]
− ωp

i j
= 1

2

(
sin j − s jni

)
, (9)

here ωp
i j

is the antisymmetric parts of the transformation strain

hich is taken as zero in our study. The rotation jump (in addition to

he transformation strain) of a domain in a long strip in tension cre-

tes a slight misalignment (kinking) with the loading axis and thus

auses bending (Corona et al., 2002) and it is ignored here for the

urpose of simplicity of mathematical analysis. The effect of kinking

n energetics is definitely worth investigation in the future work. The

train discontinuity in Eq. (8) is a solution to the compatibility condi-

ion in Eq. (4).

If we have εp
i j

= −(sin j + s jni)/2 (or equivalently [Re
i j

] = 0), then

he two phases contact along a non-distorted common plane (invari-

nt plane) and no elastic strain arises as a result of the contact of

hases (see Fig. 3). On the contrary, the deviation of transformation

train discontinuity from the invariant plane defines the degree of

utual elastic phase distortions and gives rise to internal stresses.

n other words, it is the interface incompatibility of transformation

train on the interphase boundary that is the source of the internal

tresses in a heterophase system. The fields of internal stresses are

ong range and are spread from the source interface to distances of

he order of the boundary extent (the smallest dimension of the ob-

ect) (Roitburd, 1978). For example, in Dai and Cai (2006) the ana-

ytical solution for an infinite slender elastic cylinder under phase

ransition was presented and it was found that the thickness of the

hase boundary is proportional to the radius of the cylinder. But for

ost general problems, it is extremely challenging to achieve analyt-

cal solutions and we have to implement numerical solutions such as

nite element simulations.

For most shape memory alloys under tensile loading, the non-zero

omponents are only εp
, εp

and εp
. Then Eq. (5) can be simplified
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Fig. 4. An infinite bar with a martensite inclusion and the decomposition of the origi-

nal problem into three sub-problems: (a) original problem, (b) sub-problem I, (c) sub-

problem II, (d) sub-problem III.

Fig. 5. The variation of stresses σ 33 and σ 22 along the x3-axis when x2 = 0.

i

σ

σ

p

i

f

t

as:

[Re] =

⎡
⎢⎣

εp
33

n2
2 + εp

22
n2

3 −εp
33

n1n2 −εp
22

n1n3

−εp
33

n1n2 εp
33

n2
1 + εp

11
n2

3 −εp
11

n2n3

−εp
22

n1n3 −εp
11

n2n3 εp
22

n2
1 + εp

11
n2

2

⎤
⎥⎦. (10)

It can be checked that in Eq. (10) there is no specific interface ori-

entation nl that can satisfy the condition [Re
i j

] = 0. We can expect that

the elastic strain and stress field have to appear around the interface

to guarantee the compatibility of total strains. As a consequence, it

will lead to the interfacial energy stored around the interface.

In previous studies of thin-walled structures like thin-walled

tubes (Li and Sun, 2002; He and Sun, 2009a, 2009b, 2009c), only two

transformation strain components (εp
11

and εp
33

) were considered in

determining the orientation of the domain front in the x1x3-plane.

The transformation strain εp
22

along the wall-thickness direction (x2-

axis) was treated separately and considered as the origin of interfacial

energy. In this case we can ignore the effect of εp
22

and n2 in Eq. (10):

[Re] =

⎡
⎣0 0 0

0 εp
33

n2
1 + εp

11
n2

3 0

0 0 0

⎤
⎦. (11)

It can be seen that we have [Re
i j

] = 0 for two specific orientations

nl of the “invariant-line” on the x1x3-plane:

n =
[

±
√

− εp
11

εp
33

− εp
11

0

√
εp

33

εp
33

− εp
11

]
. (12)

Therefore, the “invariant-line” exists only if εp
11

and εp
33

have op-

posite signs (εp
33

> 0 > εp
11

). The corresponding orientation angle θ to

the x-axis can be given as:

θ = tan−1

(√
− εp

11

εp
33

)
or θ = π − tan−1

(√
− εp

11

εp
33

)
. (13)

For the transformation strain εp
11

= −2.5% and εp
33

= 5% in poly-

crystalline NiTi shape memory alloys, the orientation angle θ0 ≈ 35°.
In Li and Sun (2002), the principle of energy minimization was ap-

plied to determine the orientation angle of a thin flat ellipsoidal do-

main in the tube system, and the same interface orientation was

found as those in Eqs. (12) and (13).

Comment 1: Anisotropy widely exists in most of textured poly-

crystalline materials. Here we made the assumptions of isotropic

transformation strains and isotropic linear elastic austenite and

martensite. The purpose is mainly for the simplicity of mathematical

analysis. The effects of material anisotropy on the interfacial energy

of domain are definitely worth investigation in the future work.

Next, we aim to study the effect of the transformation strain

εp
22

(= −2.5%) along the wall-thickness direction (x2-axis) and get

preliminary understanding of interfacial energy. This target can be

achieved by considering a simple plane-stress problem of an infinite

long bar in x3x2-plane with a half (x3 < 0) in austenite phase and the

other half (x3 > 0) in martensite phase as shown in Fig. 4. The thick-

ness of the bar (along x2-axis) is 2c. The original problem in Fig. 4(a)

can be decomposed into three sub-problems as shown in Fig. 4(b)–(d)

and the solutions are given in Appendix A. The distributions of total

stresses along x -axis for those points located at x = 0 (see Eq. (A11)
3 2
n Appendix A) can be expressed as

σ33 = Eεp
22

π

∫ ∞

0

sinh k − k cosh k

sinh k cosh k + k

sin
(

kx3

c

)
k

dk,

22 = −Eεp
22

π

∫ ∞

0

(
1 − sinh k + k cosh k

sinh k cosh k + k

)
sin

(
kx3

c

)
k

dk,

32 = 0. (14)

The variation of stresses σ 33 and σ 22 in Eq. (14) along x3-axis is

lotted in Fig. 5. It is seen that the stresses are mainly concentrated

n a small region (|x3/c| < 1) around the austenite–martensite inter-

ace. It is stress free for the regions far away from the interface and

herefore they have no contribution to the interfacial energy.
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Fig. 6. A straight bar of rectangular cross-section. The bar consists of high-strain

(martensite) and low-strain (austenite) regions that are separated by a single planar

interface with orientation angles θ1 and θ2.
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The elastic strain energy of the bar (see Eq. (A12) in Appendix A)

an be approximately written as

el =
E
(
εp

22

)2
c

π

∫ ∞

0

{∫ ∞

0

[
1 − 2 sinh k sinh k

sinh k cosh k + k

1

k

]
sin

(
kx3

c

)
k

dk

}
dx3.

(15)

Although Eq. (15) is still not very simple, we can see that the

lastic strain energy Uel is linearly proportional to the half-width c

long x2-axis and this energy is mainly stored around the austenite–

artensite interface.

As a summary, it is clearly shown in Eq. (10) that the strain mis-

atch due to the transformation strain in a polycrystalline NiTi bar

annot be accommodated without elastic strains and therefore the

lastic stresses must appear around the interface. Such a localized

tress field leads to the interfacial energy (see Eq. (15) as an exam-

le) for the macroscopic austenite–martensite interface. This physi-

al picture and origin of the macroscopic interface energy is consis-

ent with the thermodynamic Ginzburg-Landau theory (or Cahn and

illiard theory) in that the interface zone is in the non-convex region

f free energy function and has extra bulk energy than the austenite

nd martensite phases.

. Interface orientations in bars under tension

In this section, we shall determine the interface orientations in

uperelastic NiTi bars under tensile loading. We consider a rectan-

ular bar of a length L having a uniform cross-section (width w and

hickness t) as shown in Fig. 6. We assume that half of the bar is

ransformed into the martensite phase (domain �) with a planar

ustenite–martensite interface located at the center of the bar. The

ssumption of such a planar interface is motivated by both the exper-

mental observation and the purpose of mathematical simplicity.

Based on the understanding in Section 2, the problem to quan-

ify the interfacial energy can be solved by first determining the two

rientation angles (θ1 and θ2) of the austenite–martensite interface

see Fig. 6). The total energy of the system is computed by means of

nite element modeling. We aim to find the interface orientation (θ1

nd θ ) of an energy minimized configuration for various bar width
2
and thickness t. For simplicity, we assume the martensite phase

nd the austenite phase have the same elastic constants (modulus

= 30 GPa and Poisson’s ratio ν = 0.3). The volume change in phase

ransformation can be ignored and the nonzero components can be

ritten as εp
11

= εp
22

= −2.5%, εp
33

= −2εp
11

= 5%.

The Helmholtz free energy of the system under the displacement-

ontrolled boundary conditions can be expressed as (Dong and Sun,

012):

total = 
Uchem + Uel + Uext, (16)

here 
Uchem is the change in chemical free energy, Uel is the

train energy due to the presence of martensite domain and Uext is

he extra elastic energy due to the external displacement-controlled

tretching.

Taking the stress-free austenite phase as the reference state,

he total change in chemical free energy due to the thermo-elastic

artensitic transformation is

Uchem = V�
ϕ(T) = L

2
wt
ϕ(T), (17)

here V� is the volume of martensite and 
ϕ(T) is the chemical free

nergy density difference between two phases. It only depends on

he temperature T and can be approximated as a linear function of T

round the equilibrium temperature T0:

ϕ(T) = ϕM(T) − ϕA(T) = k(T − T0), (18)

here k is a material constant determined by the experiments.

The strain energy due to the presence of the martensite domain �

an be expressed as

el = −1

2

(
σ̄11ε

p
11

+ σ̄22ε
p
22

+ σ̄33ε
p
33

)
V�, (19)

here σ̄11, σ̄22 and σ̄33 denote the average of the stress σ 11, σ 22 and

33, respectively over �:

¯11 = 1

V�

∫
�

σ11dV , σ̄22 = 1

V�

∫
�

σ22dV , σ̄33 = 1

V�

∫
�

σ33dV ,

(20)

The extra elastic energy due to external displacement-controlled

oading can be expressed as

ext = Lwt
E

2

(
ε0 − εp

33

2

)2

, (21)

here ɛ0 is the applied nominal strain.

For our problem, the total change in chemical free energy 
Uchem

n Eq. (17) is fixed. For a given nominal strain, the extra elastic energy

ext in Eq. (21) is also fixed. Therefore, we only need to investigate the

train energy Uel due to the presence of the martensite domain (see

q. (19)). In the finite element modeling, the boundary constraints

an be set as follows: at the upper surface (z = L), the deformation

long the z-axis is forbidden (u3 = 0) and especially at the center

f the upper surface (x = y = 0, z = L) the deformations along the x-

nd y-axes are also forbidden due to symmetry (u1 = u2 = 0). At the

ottom surface (z = 0), the deformations along the x- and y-axes are

orbidden due to symmetry (u1 = u2 = 0), and the elongation along

he z-axis is free (u3 �= 0) and its magnitude is the same for all surface

oints.

We first choose the bar geometry as L = 20 mm and w = 1 mm.

he variation of strain energy Uel with two orientation angles

1 and θ2 for four different bar thickness/width ratio (t/w =
.25, 0.5, 0.75, 1) is shown in Fig. 7. It is seen that the minimum

train energy always occurs at the same orientation angles (θ1 ≈ 35°
nd θ2 ≈ 0°). In other words, the interface tends to orient along the

invariant-line” on the front surface (xz-plane) of the bar, while the

ide-walls of the interface (on yz-surface) are always perpendicular

o the loading axis (z-axis). It is noticed that for the case of a square
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Fig. 7. The variation of total energy Uel with two orientation angles θ1 and θ2 for different bar thickness/width ratio: (a) t/w = 0.25, (b) t/w = 0.5, (c) t/w = 0.75, (d) t/w = 1 (all

with given L/w = 20).
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cross-section (with t/w = 1), there exists another pair of orientation

angles (θ1 ≈ 0° and θ2 ≈ 35°) corresponding to the minimum total

energy due to the symmetry.

Experimental observation of morphologies of austenite–

martensite interfaces was conducted for uni-axially stretched NiTi

shape memory alloy bars of different aspect ratios ranging from 0.25

to 1. As shown in Fig. 8, the interface on the front surface (xz-plane)

of each bar oriented at around 35° to the x-axis, while the interface

on the side surface (yz-plane) of each bar was always perpendicular

to the loading axis (z-axis). Such experimental observations agree

well with our modeling predications.
Fig. 8. Morphologies of interfaces (domain fronts) between austenite and martensite

in uni-axially stretched NiTi shape memory alloy bars of different aspect ratios (t/w =
1.0, 0.5, 0.25, 0.1).
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As a summary, for long NiTi bars (with L � w) under stretching,

he orientation angles of the interface should always be θ1 = θ0 ≈ 35◦

nd θ2 ≈ 0°.

. Interfacial energy and its length dependence

In this section, we shall derive the approximate expression of the

nterfacial energy. Based on the analysis and experimental observa-

ion in Section 3, we recognize that the two orientation angles of the

nterface are always θ1 = θ0 ≈ 35◦ and θ2 ≈ 0° for long NiTi bars (with

� w). Therefore, in this section our focus will be on the three length

cales (bar length L, width w and thickness t).

For the cases with displacement-controlled boundary constraints

tudied in Section 3, the strain energy Uel (see Eq. (19)) consists of

wo parts, the interfacial energy and the bulk bending energy. The

nterfacial energy is due to the mismatch between the spontaneous

ransformation strain of the domain and the surrounding austenite

nd is localized around the domain front (interface), while the bulk

ending energy is due to the constraints at the bar ends and is stored

hroughout the whole bar. To get a clear understanding of the interfa-

ial energy, we first choose different boundary constraints from those

n Section 3 to remove the bulk bending energy: at the upper sur-

ace (z = L), the deformations are totally free (u1 �= 0, u2 �= 0, u3 �=
). At the bottom surface (z = 0), the deformations are all forbidden

u1 = u2 = u3 = 0).

The variation of the interfacial energy density per unit area

front/(tw/cos θ0) with the bar thickness t and width w is shown

n Fig. 9. It is seen that the interfacial energy density γ =
front/(tw/ cos θ0) is linearly proportional to the bar thickness t and

oes not depend on the specific value of the bar width w:

front = γ
wt

cos θ0

= C2t
wt

cos θ0

, (22)

here C2 is a constant.

From Eq. (22) it is seen that there exists a characteristic length

cale lfront ∼ t. To clarify this length scale, the distributions of the

ormal strain ɛ22 across the interface along z-axis for those points

ocated at x = y = 0 are plotted in Fig. 10. It is seen that the length

cale l is linearly proportional to the bar thickness t. This confirms
front
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Fig. 9. The variation of the front energy density per unit area Ufront/(t · w/cos θ0) with

the bar thickness t and width w.

Fig. 10. The distribution of the normal strain ɛ22 along the z-axis for those points lo-

cated at x = y = 0.
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Fig. 11. The variations of the front energy density per unit area Ufront/(t · w/cos θ0)

with the normalized bar length L/w for different normalized bar thickness (t/w =
0.25, 0.5, 0.75, 1).

Fig. 12. The variations of (a) the bending energy Ubend and (b) the front energy den-

sity per unit area Ufront/(t · w/cos θ0) with the normalized bar length L/w for different

normalized bar thickness (t/w = 0.25, 0.5, 0.75, 1).
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he statement in Section 2 that the interfacial energy Ufront is a local

lastic energy stored around the domain front (interface).

From Eqs. (15) and (19), we notice that the transformation strains
p
11

and εp
33

show no contribution to the strain energy Uel since the

nterface orientation θ1 = θ0 ≈ 35◦ largely reduces the xz-plane mis-

atch. Therefore, we can draw the conclusion that the interfacial en-

rgy is fully due to the transformation strain εp
22

along the bar thick-

ess direction:

front = −1

2
σ̄22ε

p
22

V�. (23)

Next, we consider the displacement-controlled loading condition

o check if the end constraint and the bar length L contribute to

he interfacial energy. The variation of the interfacial energy den-

ity per unit area Ufront/(tw/cos θ0) with the normalized bar length

/w for different normalized bar thickness (t/w = 0.25, 0.5, 0.75, 1)

re shown in Fig. 11. It is seen that the interfacial energy density

front/(tw/cos θ0) does not depend on the normalized bar length L/w,

hich double confirms our conclusion that the interfacial energy (do-

ain front energy) is a local elastic energy due to the local stress field

round the domain front.

The variation of the bending energy Ubend with the normal-

zed bar length L/w for different normalized bar thickness (t/w =
.25, 0.5, 0.75, 1) are shown in Fig. 12. It is seen that the normal-

zed bending energy Ubend/(tw/cos θ0w) is inversely proportional to

he normalized bar length L/w and does not depend on the normal-
zed bar thickness t/w:

bend = C1
wt

cos θ0

w2

L
, (24)

here C1 is a constant. The bending energy Ubend therefore is a bulk

lastic energy since it depends on the bar length L.

As a summary, for long NiTi bars (with L � w) under stretching,

he interfacial energy (domain front energy) is a local elastic energy

ue to the local stress field around the domain front. The interfacial

nergy density γ does not depend on the bar length L and width w,

hile it is linearly proportional to the bar thickness t.

. Orientation dependence of the interfacial energy

Recent experiments on a simply supported NiTi shape memory al-

oy bar under three-point bending (with a concentrated force applied

t the center of the bar) demonstrate that there was orientation (the

ngle θ to the vertical axis of the bar) evolution of the interface be-

ween austenite matrix and quasi-isosceles-triangle shaped marten-

ite domain (see Fig. 13). At the beginning of the martensite domain

ucleation, the interface was oriented at about 35° (see Fig. 13(a)) to

he vertical axis of the bar, similar to the “invariant line” in tension
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Fig. 13. The orientation (the angle to the vertical axis of the bar θ ) evolution of the interface between austenite matrix and quasi-isosceles-triangle shaped martensite domain in

a simply supported NiTi shape memory alloy bar under three-point bending: (a) 35°; (b) 38°; (c) 43°; (d) 48°.

Fig. 14. A straight bar of rectangular cross-section under three-point bending. The bar

consists of high-strain (martensite) and low-strain (austenite) regions that are sepa-

rated by planar interfaces.
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of bars. For the quasi-isosceles-triangle shaped domain under con-

tinued bending, in addition to the upward propagation of the apex,

the interfaces gradually rotate which leads to an increase of the ori-

entation angle θ (35°→38° → 43° → 48°). The martensite domain

growth through interface rotation significantly reduced the curvature

of bended shape of the transformed zone due to the physical origin of

the transformation strain in the longitudinal direction, thus releasing

the bending strain energy. From an energetic point of view, the rota-

tion of the interface associated with martensite domain growth can

be regarded as the result of the energy minimization principle.

Consider the three-point bending model shown in Fig. 14. We

choose the bar geometry as L = 20 mm and h = 1 mm. For this model,
Fig. 15. The variation of total energy Utotal with two governing parameters x/h and θ1 f
here are two governing parameters: the height x of the martensite

omain and the orientation angle θ1. The total energy of the system is

lso computed by means of finite element modeling. We aim to find

he energy minimized configuration for various given displacement

. The phase transformation strain is the same as that for the tensile

oading in Section 3 with εp
11

= εp
22

= −2.5%, εp
33

= −2εp
11

= 5%.

The variation of total energy Utotal with two governing parameters

/h and θ1 for four different applied loads (u/h = 1, 1.2, 1.4, 1.6) is

hown in Fig. 15. For relatively small displacement u = h, the energy

inimized configuration corresponds to the fully austenite phase. For

= 1.2h, the orientation angle θ1 for the energy minimized configu-

ation is about 35°. It is seen that this preferred orientation angle θ1

radually increases as the applied displacement u increases. At the

ame time, the height x of the martensite domain also increases as u

ncreases.

When the interface orientation θ1 deviates from 35°, the interfa-

ial energy Ufront will not only depend on the transformation strain
p
22

along the bar thickness direction (see Eq. (23)), but also will de-

end on the other two transformation strains (εp
11

and εp
33

). To address

he orientation dependence of the interfacial energy, we employ the

nite element modeling in Section 4 and consider the bar geometry

ith different t/w. The boundary constraints chosen are the same as

hose in Section 4: at the upper surface (z = L), the deformations are

otally free (u1 �= 0, u2 �= 0, u3 �= 0). At the bottom surface (z = 0), the

eformations are all forbidden (u1 = u2 = u3 = 0). Now there is no

ulk bending energy in the bar and the strain energy Uel equals the

nterfacial energy Ufront. Under the condition θ2 = 0◦, the variation of

he interfacial energy Ufront with the orientation angle θ1 for different
or different applied loads: (a) u/h = 1, (b) u/h = 1.2, (c) u/h = 1.4, (d) u/h = 1.6.
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Fig. 16. The variation of front energy density γ with the orientation angles θ1 (with θ2 = 0) for four different bar geometries: (a) w = 1 mm, t = 0.25 mm, (b) w = 0.5 mm,

t = 0.25 mm, (c) w = 1 mm, t = 0.5 mm, (d) w = 1 mm, t = 0.75 mm.
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ombinations of bar width and thickness is shown in Fig. 16. It is seen

hat we can assume the orientation-dependent interfacial energy to

e expressed as:

front = γ
wt

cos θ1

=
[
C2t + C3w(θ1 − θ0)

2
] wt

cos θ1

, (25)

here C2 and C3 are constants, and C2 is the same as that in Eq. (22).

his scaling relation agrees well with the simulation results for the

rientation angle |θ1 − θ0| < 15◦.

As a summary, in a more complicated loading condition such as

hree-point bending the orientation dependence of the interfacial

nergy density γ can be accounted for by a term proportional to

(θ1 − θ0)
2.

. Summary and conclusions

The macroscopic interfaces (domain fronts) are commonly ob-

erved in the phase transition process of bulk polycrystalline NiTi

hape memory alloys under external loading. The understanding and

uantification of the interfacial energy are therefore fundamental is-

ues and play important roles in modeling the phase transition pro-

ess in these materials. In this paper, we studied the energetics of

martensite domain with planar interfaces in a superelastic NiTi

ar through an inclusion model. The misfit strain energy due to the

resence of a martensite domain was quantified numerically by fi-

ite element simulation. It was demonstrated that such misfit energy

trongly depends on three length scales (bar length L, width w and

hickness t) and also two orientation angles (θ1 and θ2) of the in-

erface. Understanding of the physical origin of the interfacial energy

s well as its length and orientation dependences was achieved. The

ain conclusions are as follows:

1. The interfacial energy is a local elastic strain energy stored around

the interface. Its physical origin is the interface incompatibility

of transformation strain on the interphase boundary. Such in-

compatibility leads to internal stresses which are long range and

spread from the interface to distances of the order of the bound-

ary extent (the smallest dimension of the object).
2. For long NiTi bars under stretching, the interface orientation cor-

responding to minimum strain energy is always θ1 = θ0 ≈ 35◦ and

θ2 ≈ 0°. In other words, the inter-section of the interface with the

front surface (xz-surface) of the bar is the “invariant-line” on that

surface, while on the side surface (yz-surface) of the bar it is al-

ways perpendicular to the loading axis (z-axis). The interfacial en-

ergy density γ per unit area is not a material constant, but shows

a linear relationship with a length scale of the bar thickness t.

3. The deviation of interface orientation from the “invariant-line” is

a reasonable and observable phenomenon in a more complicated

loading condition such as three-point bending. The orientation

dependence of the interfacial energy density γ can be accounted

for by a term proportional to the square of angle deviation from

θ0, i.e., (θ1 − θ0)
2. This scaling relation agrees well with the sim-

ulation results for the orientation angle |θ1 − θ0| < 15◦.
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ppendix A. Solution of inclusion problem

.1. Sub-problem I

The martensite domain is subject to the traction p = −Eεp
22

> 0 on

ts upper and bottom surfaces to guarantee there is no deformation

f the bar as shown in Fig. 4(b). We have

I
33 = 0, σ I

22 = p, σ I
32 = 0 for x3 > 0,

I
33 = σ I

22 = σ I
32 = 0 for x3 < 0. (A1)

.2. Sub-problem II

The infinite long bar is subjected to the distributed pressure p/2

n its upper and bottom surfaces as shown in Fig. 4(c). We have

II
33 = 0, σ II

22 = − p
, σ II

32 = 0. (A2)
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A.3. Sub-problem III

The same infinite bar is subjected to the distributed traction p/2

on the left side and the distributed pressure p/2 on the right side as

shown in Fig. 4(d). The boundary conditions require that at x2 = ±c,

σ III
22 = − p

2
, σ III

32 = 0 for x3 > 0,

σ III
22 = p

2
, σ III

32 = 0 for x3 < 0. (A3)

A standard way to solve this problem is to employ Airy’s stress

function φ. The stress components expressed by φ are

σ33 = ∂2φ

∂x2
2

, σ22 = ∂2φ

∂x2
3

, σ32 = − ∂2φ

∂x3∂x2

, (A4)

where φ satisfies the bi − harmonic equation

∂4φ

∂x4
3

+ 2
∂4φ

∂x2
3
∂x2

2

+ ∂4φ

∂x4
2

= 0.

In order to satisfy the bi-harmonic equation, the stress function φ
can be assumed to take the form

φ = c2

∫ ∞

0

[
C1(k) cosh

(
kx2

c

)
+ C2(k)

kx2

c
sinh

(
kx2

c

)]
sin

×
(

kx3

c

)
dk. (A5)

From Eq. (A4), the stress components can be obtained as

σ III
33 =

∫ ∞

0

k2

{
C1(k) cosh

(
kx2

c

)
+ C2(k)

[
2 cosh

(
kx2

c

)

× + kx2

c
sinh

(
kx2

c

)]}
sin

(
kx3

c

)
dk,

σ III
22 = −

∫ ∞

0

k2

[
C1(k) cosh

(
kx2

c

)
+ C2(k)

kx2

c
sinh

(
kx2

c

)]

× sin

(
kx3

c

)
dk,

σ III
32 = −

∫ ∞

0

k2

{
C1(k) sinh

(
kx2

c

)
+ C2(k)

[
sinh

(
kx2

c

)

+kx2

c
cosh

(
kx2

c

)]}
cos

(
kx3

c

)
dk. (A6)

In order to satisfy the lateral boundary condition, the unknown

functions should be determined by the following equations:

1(k) cosh k + C2(k)k sinh k = p

πk3
,

1(k) sinh k + C2(k)(sinh k + k cosh k) = 0. (A7)

by using the relation

∫ ∞

0

sin
(

kx3

c

)
k

dk =

⎧⎪⎨
⎪⎩

π

2
, for x3 > 0

0, for x3 = 0

−π

2
, forx3 < 0

.

From Eq. (A7) we get

1(k) = p

πk3

sinh k + k cosh k

sinh k cosh k + k
, C2(k) = − p

πk3

sinh k

sinh k cosh k + k
.

(A8)
herefore,

σ III
33 = − p

π

∫ ∞

0

[
sinh k − k cosh k

sinh k cosh k + k
cosh

(
kx2

c

)

+ sinh k

sinh k cosh k + k

kx2

c
sinh

(
kx2

c

)]
sin

(
kx3

c

)
k

dk,

III
22 = − p

π

∫ ∞

0

[
sinh k + k cosh k

sinh k cosh k + k
cosh

(
kx2

c

)

− sinh k

sinh k cosh k + k

kx2

c
sinh

(
kx2

c

)]
sin

(
kx3

c

)
k

dk,

III
32 = − p

π

∫ ∞

0

[
k cosh k

sinh k cosh k + k
sinh

(
kx2

c

)

− sinh k

sinh k cosh k + k

kx2

c
cosh

(
kx2

c

)]
cos

(
kx3

c

)
k

dk. (A9)

.4. Superposition

By superposing three sub-problems, the total stresses can be ex-

ressed as

σ33 = σ I
33 + σ II

33 + σ III
33

= − p

π

∫ ∞

0

[
sinh k − k cosh k

sinh k cosh k + k
cosh

(
kx2

c

)

+ sinh k

sinh k cosh k + k

kx2

c
sinh

(
kx2

c

)]
sin

(
kx3

c

)
k

dk,

22 = σ I
22 + σ II

22 + σ III
22

= p

π

∫ ∞

0

[
1 − sinh k + k cosh k

sinh k cosh k + k
cosh

(
kx2

c

)

+ sinh k

sinh k cosh k + k

kx2

c
sinh

(
kx2

c

)]
sin

(
kx3

c

)
k

dk,

32 = σ I
32 + σ II

32 + σ III
32

= − p

π

∫ ∞

0

[
k cosh k

sinh k cosh k + k
sinh

(
kx2

c

)

− sinh k

sinh k cosh k + k

kx2

c
cosh

(
kx2

c

)]
cos

(
kx3

c

)
k

dk. (A10)

Specifically when x2 = 0, we have

σ33 = − p

π

∫ ∞

0

{
sinh k − k cosh k

sinh k cosh k + k

}
sin

(
kx3

c

)
k

dk,

σ22 = p

π

∫ ∞

0

[
1 − sinh k + k cosh k

sinh k cosh k + k

]
sin

(
kx3

c

)
k

dk,

32 = 0. (A11)

The total elastic energy of the bar can be calculated as

el = 1

2

∫
V

σi jε
e
i jdV

=
E
(
εp

22

)2
c

π

∫ ∞

0

{∫ ∞

0

[
1− 2 sinh k sinh k

sinh k cosh k + k

1

k

]
sin

(
kx3

c

)
k

dk

}
dx3.

(A12)
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