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An incremental wave superimposed on a pre-deformed hyper-elastic material perceives an elastic

media with the instantaneous modulus of the current material. This offers a new route with a broad-

band feature to control elastic waves by purposely creating finite deformation field. This study

proves that the governing equation of a semi-linear material under a symmetric pre-deformation

condition maintains the form invariance for longitudinal wave, so the longitudinal wave control can

be made by transformation method without the constraint condition on principle stretches; however,

this is not the case for shear waves. Therefore, pre-deforming a semi-linear material provides a

potential method for treating longitudinal and shear waves differently. Examples with elastic wave

control and band structure shift through pre-deforming a semi-linear material are provided to illus-

trate this finding. Finally, a one-dimensional spring lattice is proposed to mimic a semi-linear mate-

rial, and the dispersion relation for longitudinal waves in a sandwich structure with such spring

lattice is shown to be invariant during elongation, confirming the result found based on a homoge-

neous semi-linear material. These results may stimulate researches on designing new hyper-elastic

microstructures as well as designing new devices based on pre-deformed hyper-elastic materials.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.5000491]
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I. INTRODUCTION

Wave steering by carefully distributing material in space is

an interesting topic for both scientific and engineering commu-

nities. A recent significant progress along this line is the propo-

sition of transformation method,1–4 which in essence maps

physical fields from one region to another based on the form-

invariance of the governing equation. Within the framework of

conventional elasticity, the elastic wave equation cannot retain

its form under a general mapping.2,5 An approximate method6

with conventional elastic materials or an exact control strategy7

with hypothesized elastic materials without the elastic minor

symmetry are proposed to control elastic waves. Another inter-

esting method is to look at the degenerated elastic materials;

for example, pentamode materials are shown to satisfy the

form-invariance4 but are used to control specifically the pseudo

pressure wave instead of a fully coupled elastic wave.

The transformation method based on pentamode materials gen-

erally requires a symmetric or quasi-symmetric mapping.8

Realization of the materials to meet the design requirement is

of a great challenge and needs meticulous microstructure

design.9,10 In addition, they may suffer from limited frequency

band due to inevitable dispersion at high frequency.

To overcome these shortcomings, an alternative promis-

ing route is proposed to steer elastic waves by pre-deforming

a hyper-elastic material. Wave on the pre-deformed material

perceives a new media with the modified local density and

instantaneous modulus of the current material.11 This effect

purely originates from the finite deformation and hyper-

elastic constitutive relation of the hyper-elastic material. The

non-dispersive local density and instantaneous modulus may

provide a new way to control elastic waves with a broadband

efficiency. By noticing the similarity between the material

parameters required by the asymmetric transformation7 and

the local density and instantaneous modulus11 of a pre-

deformed hyper-elastic material, the hyper-elastic transfor-

mation theory12–14 is proposed to control the superimposed

incremental waves by pre-deforming a hyper-elastic mate-

rial. Neo-Hookean12,15 hyper-elastic materials have been

investigated to design a cylindrical cloak for anti-plane shear

waves; the cloaking effect is demonstrated from scattering

analysis. This hyper-elastic material is also used to design a

phononic crystal with invariant band gaps16 for shear waves.

Chang et al.14 further studied the in-plane longitudinal and

shear waves in a compressible neo-Hookean material under

a pre-shear deformation, and they found that the in-plane

shear waves will follow the design by the hyper-elastic trans-

formation, while the longitudinal waves will not be affected.

However, it is only rigorously proved that incompressible

neo-Hookean materials maintain the form invariance for

anti-plane shear waves.12,15,16 Norris and Parnell13 proposed

using a semi-linear hyper-elastic material with a symmetrica)Electronic mail: hugeng@bit.edu.cn
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pre-deformation to control fully coupled elastic waves, and a

cylindrical cloak is designed for both in-plane longitudinal

and shear waves. Based on the semi-linear energy function

in terms of three principal stretches, they find that the out of

plane extensions should be adapted accordingly with the in-

plane stretches in order to control the in-plane longitudinal

and shear waves,13 simultaneously. In this paper, we observe

that the second order derivatives of the semi-linear energy

function are composed of the deformation gradients and a

fourth order tensor with the minor anti-symmetry. This

fourth order tensor with the minor anti-symmetry is can-

celled out with a divergence field, implying that a semi-

linear material, under a general symmetric deformation with-

out the out of plane extensions constraint, still maintains the

form invariance for a divergence field. Therefore, the trans-

formation method can be used to control longitudinal waves.

This finding provides a useful tool to design devices interact-

ing differently with the longitudinal and shear components

of a fully coupled elastic wave.

This research is arranged as follows. First, we will prove

that the divergence component of elastic waves on a sym-

metrically pre-deformed semi-linear material can be strictly

mapped from the initial configuration. These results indicate

that the governing equation for longitudinal waves in a semi-

linear material under a symmetric pre-deformation maintain

the form invariance, so they can be controlled within the

strategy of transformation method by pre-deformation.

Second, numerical simulations, demonstrating wavelength

magnifying and dispersion relation invariance for longitudi-

nal waves on a pre-deformed semi-linear material, will be

conducted to validate the transformation method. Finally, a

spring lattice is proposed as a one-dimensional (1D) proto-

type for a homogeneous semi-linear material, and the invari-

ant dispersion relation for longitudinal waves under a finite

elongation will be demonstrated through a 1D sandwich

structure to confirm the theoretical finding.

II. METHODS

A. Wave propagation on a deformed hyper-elastic
material

A stress free hyper-elastic material occupying an initial

configuration X0 is deformed to the current configuration X
through the boundary and body loads. Mathematically, this

process is represented by a mapping between the two config-

urations x: X0!X, which maps any point X in X0 to another

point x in X, x¼ x(X). This mapping can also be denoted by

the deformation gradient F¼ @x/@X in nonlinear elasticity,11

or in component form FiJ¼ @xi/@XJ. Here, lowercase and

uppercase subscripts refer to the initial configuration and

current configuration, respectively. The deformation tensor

F in general can take any form compatible with physical

deformation, e.g., identity, diagonal, or symmetric form.

A small displacement perturbation u(x, t) superimposed

on the deformed body X is governed by the dynamic equa-

tion in the current configuration,11

quj;tt ¼ riðCijklrkulÞ: (1)

Here, ri with a lowercase subscript represent the partial

derivative with respect to the current coordinate xi, the dis-

placements ul with a lowercase subscript mean the fields

physically occurred in the current configuration, and sub-

script t denotes time derivative. The used subscripts range

from 1 to 3 and duplicated indexes should be understood as

summation. The local density q and instantaneous elastic

tensor C in the current configuration are,

q ¼ J�1q0;

Cijkl ¼ J�1FiMFkNAMjNl ¼ J�1FiMFkN
@2W

@FjM@FlN
: (2)

In which J is determinant of the deformation tensor F, q is

derived from the mass conservation law and q0 represents

the density in the initial configuration, and W is the strain

energy function of the hyper-elastic material. The instanta-

neous elastic tensor C is a fourth order tensor without the

minor symmetry, and the incremental wave is likely to be

governed by an elastic material with asymmetric incremental

stress Cijklrkul. The true Cauchy stress in the hyper-elastic

material is indeed still symmetric; only the incremental

stress is asymmetric. This observation stimulates researches

on the transformation theory for elastic waves through a

finite deformation in a hyper-elastic material.12–14 It should

be noted, although the actual perturbation occurs on the cur-

rent configuration X, its governing equation can be trans-

formed to the initial configuration X0. Following the finite

deformation elasticity theory,9 Eq. (1) can be easily pulled

back to the initial configuration,

q0uj;tt ¼ JriðJ�1FiMFkNAMjNlrkulÞ ¼ rMðAMjNlrNulÞ:
(3)

In the above equation, two mathematic identities, ri(J
–1FiM)

¼ 0, FiMri¼rM, are used. rM with an uppercase subscript

represents the partial derivative with respect to the initial

coordinate XM. It is seen that the modulus, AMjNl ¼ @2W/

@FjM@FlN, functions as a nominal elastic modulus in the ini-

tial configuration, and therefore is called the pull-backed

modulus in the following.

For the same hyper-elastic material without the pre-

deformation, wave propagation is governed by the equation

in the initial configuration X0,

q0vJ;tt ¼ rMðC0mjnlrNvLÞ
¼ ðk0 þ l0ÞrJðrLvLÞ þ l0rMrMvJ: (4)

Here, v(X, t) is used for the displacement fields on the hyper-

elastic material without the pre-deformation to distinguish

from the displacement field u(x, t) with the pre-deformation.

The displacements vJ with an uppercase subscript mean the

fields physically occurred in the initial configuration.

Apparently, the above equation is a special case of Eq. (3)

with the deformation tensor being an identity matrix F¼ I,

and the elastic tensor for a conventional isotropic elastic mate-

rial is recovered, i.e., C0mjnl¼ k0dmjdnlþl0(dmndjl þ dmldjn)

with k0 and l0 being the lam�e constants.
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B. Transformation method for longitudinal waves with
semi-linear materials

In the following, we will prove the governing equation

for longitudinal waves is form invariant for semi-linear

materials under a symmetric deformation. The strain energy

function of a semi-linear material writes,13

W ¼ k0

2
UKK � 3ð Þ2 þ l0 UKL � dKLð Þ UKL � dKLð Þ: (5)

In which, U¼R
–1

F is the right stretch tensor for the finite

deformation gradient F and R is an orthogonal matrix

RTR¼ I. The strain energy function W is only related to the

stretch tensor U as required by objectivity. The pull-backed

modulus AMjNl for a general deformation gradient F is given

in the Appendix, and can be further simplified when F is

symmetric with R¼ I,

AMjNljF¼FT ¼ k0djMdlN þ 2l0dljdMN

þ k0 UKK � dKKð Þ � 2l0

� � @RjM

@FlN

����
F¼FT

:

(6)

In addition to the first two constant terms, the pull-

backed modulus has a third term depending on the deforma-

tion gradient F. From the geometric point of view, the sym-

metry of the deformation tensor F means the deformation

field is irrotational. If F further becomes an identity matrix I,

the modulus AMjNl will degenerate to the conventional isotro-

pic elasticity tensor (see more details in the Appendix).

Substituting the above pull-backed modulus Eq. (6) into Eq.

(3) and taking the divergence operation on both sides, one

will obtain the following equation,

q0rJuj;tt ¼ rJrMðAMjNlrNulÞ
¼ ðk0 þ 2l0ÞrMrMðrLulÞ: (7)

In deriving the above equation, the skew-symmetry of @RjM/

@FlN with respect to index j and M is used. This equation is

exactly the same as the governing equation for the divergence

field on the initially un-deformed configuration, i.e., q0rJvJ,tt

¼ (k0þ 2l0)rMrM(rJvJ). In this case, once the boundary

and loading conditions for the two configurations are set

accordingly,8 the divergence field on the pre-deformed body

can be mapped from that on the initial configuration rLul

¼FkJ(rkuj)¼rJvJ. This observation implies that, if one

region of a semi-linear material is pre-deformed without alter-

ing its boundary, then an impinged longitudinal wave inside

the pre-deformed region will follow the mapping, while out-

side the pre-deformed region it will not be influenced at all

and just perceives a homogeneous semi-linear material. It can

be proved similarly that the curl field on the pre-deformed

semi-linear material does not follow the same equation as on

the initial configuration, and therefore cannot be mapped.

This property can be used to design wave controlling devices

interacting differently with longitudinal and shear waves.

A more explicit expression for AMjNl is not available for

a general symmetric gradient; however, a very simple

formula for the in-plane components is possible for the spe-

cial symmetric gradients with F13¼F23¼ 0, F33 6¼ 0,

AMjNljF¼FT ¼ k0djMdlN þ 2l0dljdMN

þ k0 Ukk þ U33 � 3ð Þ � 2l0ð Þ 1

Fkk
ejMelN:

(8)

Here, all the index M, j, N, l, and k range from 1 to 2, and ejM

is the two-dimensional permutation tensor. Further, if the out

of plane stretch is constrained accordingly with the in-plane

stretches,

U33 ¼ 1� k0 þ l0

k0

Ukk � 2ð Þ: (9)

Equation (9) is the same as Eq. (4.14) by Norris and

Parnell.13 Substituting Eq. (9) into Eq. (8), and noticing

Ugg¼Fgg, one will obtain an isotropic in-plane elastic

tensor,

AMjNljF¼FT ¼ k0djMdlN þ l0ðdljdMN þ djNdMlÞ: (10)

So with the constraint condition of Eq. (9), both longitu-

dinal and in-plane shear waves can be controlled simulta-

neously with transformation method, as observed by Norris

and Parnell.13 However, for longitudinal waves, we demon-

strate here that the constraint condition can be removed.

III. NUMERICAL EXAMPLES

A. Wave propagation on a symmetrically pre-deformed
semi-linear material

Numerical simulation based on the hyper-elastic transfor-

mation can be performed in three steps: first, a stress free body

in the initial configuration X0 is deformed to the current config-

uration X by loading or an imaginary mapping, and then the

deformation tensor F is obtained. Second, the density q and

instantaneous elastic tensor C in the current configuration are

calculated using Eq. (2). Third, the wave equation will be

solved on the current configuration with the derived local mate-

rial parameters. The numerical simulations are all conducted

using partial differential equation and Nonlinear Mechanics

module in the commercial software COMSOL Multiphysics.

We simulate the wave propagation in a pre-deformed

semi-linear material that can magnify the wavelength. As

shown in Fig. 1(a), the initial configuration consists of two

regions, an inner circular region (R< b¼ 11 m), where b is

the radius of the outer boundary (black dashed line) for

the pre-deformed region, and an outer annular region

(b<R< 24 m). Perfectly Matched Layers adjacent to the

outer circular boundary are employed to mimic an infinite

large space without reflection. With the mapping r¼R4/b3

for the inner circular region (R< b), this region is trans-

formed to another circular region with the same radius b as

shown in Fig. 1(b). The radial mapping ensures the symmet-

ric deformation gradient F, and therefore the condition of

transformation method for longitudinal wave holds. A tiny

circle placed at r¼ 20 m can excite longitudinal or shear

J. Acoust. Soc. Am. 142 (3), September 2017 Guo et al. 1231



waves (f¼ 6.5 Hz) by expansion or rotation motions, respec-

tively. Material parameters of the semi-linear material are

k0¼ 770 Pa, l0¼ 260 Pa, and q0¼ 1 kg/m3. In the simulation,

the longitudinal and shear wave excitations are modeled

through expanding and rotating boundary of the small circle

in the domain. Figures 1(a) and 1(b) show divergence fields

for the stress free and pre-deformed cases with the longitudi-

nal wave excitation, respectively. Exactly the same fields are

observed outside the pre-deformed region as predicted theo-

retically. Further, the divergence fields in the pre-deformed

region (r< b) can be perfectly mapped from the fields in the

initial configuration withriui¼ (FkL)�1(rKvL), while the curl

fields for the stress free and pre-deformed cases [Fig. 1(c) and

1(d)] with the shear wave excitation are completely different,

and significant scattering caused by the pre-deformed region

is observed. This interesting phenomenon indicates that the

pre-deformation region is invisible for longitudinal waves, but

is a strong scatter for shear waves.

The transformation method for longitudinal waves with

a pre-deformed semi-linear material is further demonstrated

with calculation of dispersion relation. Two square unit cells

of the same sizes with a lattice constant a¼ 1 m are consid-

ered, and the periodic medium are constructed from tiling

unit cells along two orthogonal directions. One is composed

of a homogeneous stress free semi-linear material, while the

other has its inner region (r< 0.35 m) pre-deformed from the

same circular region (R< 0.35 m) with a mapping function

r¼R(R/0.35)1/2. The Bloch wave frequency can be obtained

by solving the eigen-frequency problem on one unit cell

with the Bloch wave boundary condition. The dispersion

relation is obtained by sweeping the Bloch wave vector

along the edges of the first irreducible Brillouin Zone (X-c-

M-X). Figure 2(a) is the band structure of the stress-free

homogenous unit cell, and Fig. 2(b) presents the result of the

partly pre-deformed semi-linear material unit cell. Wave

polarizations for different branches can be identified from

the modes shown below the band structures. The second

branch is longitudinal and the mode shows an overall dis-

placement parallel to the wave vector, while all other three

branches represent shear waves. From both band structures,

it is shown that the purely longitudinal branches (marked by

red dots) are exactly the same for the stress-free and pre-

deformed unit cells, while the shear related branches become

quite different for both cases. This is expected from the lon-

gitudinal wave invariance property of the symmetrically pre-

deformed semi-linear material.

B. Prototype of a 1D semi-linear material with spring
lattice

Inspired by the Hooke’s law of a perfect spring, a 1D

spring lattice is proposed to mimic the semi-linear material.

As shown in Fig. 3(a), a unit cell of the proposed spring lattice

is composed of connected beams with the following geometry

parameters: t¼ 0.012 m, h¼ 0.2 m, and w¼ 0.04 m, and all

the beams are made of the same material. A sandwiched

spring composite (SSC) can be constructed by filling the

springs into two separated homogenous materials. A unit cell

of the SSC consists of multiple spring unit cells (5� 10,

l¼ 10w) and two layers of the homogeneous materials (l1¼ l,
l2¼ 5h).

The hyper-elastic strain energy function W(F11) of the

proposed 1D semi-linear material is obtained numerically by

solving the stored strain energy in ten connected unit cells

FIG. 1. (Color online) Wave propagation on the stress-free and pre-

deformed semi-linear materials. (a), (b) Divergence fields for the stress-free

and pre-deformed cases with longitudinal wave excitation. (c), (d) Curl

fields in the stress-free and pre-deformed cases with shear wave excitation.

FIG. 2. (Color online) Band structure

of the stress-free and pre-deformed

semi-linear materials. (a) Stress free

semi-linear material case and the first

four modes correspondent to a wave

vector k¼CX/6. (b) Semi-linear mate-

rial with pre-deformed circular region

and the first four mode correspondent

to a wave vector k¼CX/6.
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with the applied displacement boundary condition, u¼ (F11

� 1)10w, and shows quadratic relation [marked by squares

in Fig. 3(c)] with respect to the deformation gradient F11¼ k
for a finite deformation range F11¼ 1.0 � 3.0 as compared

to the ideal semi-linear case (red line). Two important points

should be noted in the numerical simulation. First, since

finite rotations occur in this problem during elongation, the

geometric nonlinear effect must be turned on during the

numerical simulation. Second, although the overall elonga-

tion ratio of the unit cell is no longer small, the local strains

in the springs and the homogeneous layers are still quite

small (the Green strain is on the order of magnitude of 10�3

for a elongation ratio k¼ 3), so a linear elastic constitutive

relation is set for the spring material. Here, the constitutive

relation is taken to be the default setting in COMSOL with

geometry nonlinearity, i.e., St–Venant–Kirchohoff constitu-

tive relation. In short, the hyper-elastic behavior of the pro-

posed 1D spring lattice comes from the finite rotation but

small strain of the integrated microstructure. The numeri-

cally computed pull-backed modulus A1111¼ @2W/@F11/

@F11 (marked by triangles) is nearly constant for the investi-

gated finite strain range. The highlighted region in Fig. 3(c)

is shown more clearly in Fig. 3(d), where the modulus

changes less than 4% from a constant value. The numerical

result shows the proposed spring lattice has a nearly constant

pull-backed modulus under the elongation F11, and therefore

can be used with the hyper-elastic transformation method to

control longitudinal wave along the elongation direction. As

for its impact on the longitudinal wave in the other direc-

tions, the hyper-elastic strain energy function should be stud-

ied for a general deformation gradient and this is beyond

the main scope of this paper. Finally, since the pull-backed

modulus is obtained from the static homogenization or under

long wave approximation, in the following analysis, we

consider only the low frequency case where the static

homogenization condition holds.

Figure 3(b) shows the deformed state of the SSC with a

finite strain k¼ 1.5, where the deformation mainly concen-

trates in the turning points of the springs and the strain in the

homogenous material is extremely small; therefore the

springs can be regarded as pre-deformed while the layered

materials remain in its initial configuration. The dispersion

relations for the un-deformed and pre-deformed SSC unit

cells [Fig. 3(b)] are shown in Fig. 4(a) together with their

corresponding deformation modes in Fig. 4(b). Since the

unit cells of the un-deformed and pre-deformed cases have

different lengths, the horizontal axis in Fig. 4(a) represents a

non-dimensional wave number kxL0, with L0 being the length

of the corresponding unit cell. The true deformation is rather

small and has been exaggerated in the figures for clarity. The

modes indicate that the second and fourth branches are

mainly related to the longitudinal waves and therefore these

two branches of the pre-deformed case are almost the same

as the stress-free case, while the first and third branches are

dominated by shear waves as shown by the modes and are

changed during stretching, especially for the first branch.

The above results show that the SSC can be used as a robust

semi-linear material for controlling longitudinal waves with

the hyper-elastic transformation method.

IV. CONCLUSIONS

The hyper-elastic transformation method with semi-

linear materials is revisited. It is proved that semi-linear

materials under a general symmetric pre-deformation main-

tain the form invariance for longitudinal elastic waves, while

not for shear waves. This implies that the longitudinal wave

control can be made with the hyper-elastic transformation

method without the additional constraint on pre-stretches.

FIG. 3. (Color online) Spring lattice as

a 1D semi-linear material. (a) Unit cell

of the U-shaped spring and sandwich

spring composite. (b) The deformation

field (r�u) of the composite with a

finite strain (k¼ 1.5). (c) Mechanical

property of ten connected unit cells in

(a). (d) Enlarged view of the indicated

cyan region in (c) with a strain range

(k¼ 2.3 � 3.0).
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Wave simulations on a pre-deformed semi-linear material

show that the longitudinal waves follow exactly the designed

path by the hyper-elastic transformation method without any

scattering, while the shear waves are strongly scattered. The

dispersion relation of a semi-linear material, with a symmet-

ric pre-deformation, is shown invariant for the longitudinal

wave branches, but not for the shear related branches. These

numerical results confirm the theoretical finding. Finally, a

1D semi-linear material realized by a spring lattice is pro-

posed to mimic a semi-linear material. Numerical simula-

tions reveal that the longitudinal wave branches remain

intact during stretching. The demonstrated property of the

semi-linear material may find applications where longitudi-

nal and shear waves are expected to be controlled differently

with external deformation.
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APPENDIX: DERIVATIVE OF STRAIN ENERGY
FUNCTION

Following the polar decomposition of a deformation

tensor F¼RU, we have FTF¼U2 or in component form

UIKUKJ¼FkIFkJ. Taking the derivative of both sides with

respect to FlN leads to,

@UIK

@FlN
UKJ þ

@UKJ

@FlN
UIK ¼ FlIdNJ þ FlJdNI: (A1)

From det(U)¼ det(F)> 0, one can deduce that U is revers-

ible. Multiplying both sides with dIJ and (U�1)IJ gives,

respectively,

@UIK

@FlN
UKI ¼ FlN;

@UKK

@FlN
¼ FlIU

�1
IN ¼ RlN: (A2)

Further differentiating Eq. (A1) with respect to FrS and mul-

tiplying both sides with (U�1)IJ gives,

@RlN

@FrS
þ @UIK

@FlN

@UKJ

@FrS
U�1

IJ ¼ dlrU
�1
SN : (A3)

If F becomes an identity matrix, Eq. (A3) can be simplified

as,

@RlN

@FrS

����
F¼I

¼ 1

2
dlrdSN � dlSdrNð Þ: (A4)

With the above formulas in Eq. (A2), the second derivative

of the semi-linear strain energy function can be derived,

AMjNl¼
@2W

@FjM@FlN
¼ @

@FjM

@

@FlN

k0

2
UKK � dKKð Þ2

�

þl0 UKLUKL � 2UKKð Þ
�

¼ @

@FjM
k0 UKK � dKKð Þ @UKK

@FlN

�

þ2l0UKL
@UKL

@FlN
� 2l0

@UKK

@FlN

�

¼ @

@FjM
k0UKK � k0dKK � 2l0ð ÞRlN þ 2l0FlNð Þ

¼ k0RjMRlN þ 2l0dljdMN

þ k0UKK � k0dKK � 2l0ð Þ @RlN

@FjM
: (A5)

If the deformation tensor becomes symmetric F¼F
T, we

can simplify the pull-backed modulus Eq. (A5) as,

AMjNljF¼FT ¼ k0djMdlN þ 2l0dljdMN

þ k0 UKK � dKKð Þ � 2l0

� � @RlN

@FjM

����
F¼FT

:

(A6)

Notice that @RjM/@FlN is skew-symmetric with respect to

index j and M when F is symmetric. It can be easily proved

from this mathematical identity RTR¼ I by differentiation,

FIG. 4. (Color online) Band structure

of the proposed 1D semi-linear mate-

rial. (a) Band structure of the SSC unit

cell without (line) and with (discrete

square) pre-deformation. (b) Modes of

the first four branches correspondent to

a normalized wave number kxL0¼p/2;

the left panel is for the stress-free case

and right panel is for the pre-deformed

case.

1234 J. Acoust. Soc. Am. 142 (3), September 2017 Guo et al.



@RiK

@FlN
RjK þ RiK

@RjK

@FlN
¼ 0; (A7)

@RiJ

@FlN

����
F¼FT

þ @RjI

@FlN

����
F¼FT

¼ 0: (A8)

Further, if F becomes an identity matrix, the pull-backed

modulus becomes the conventional isotropic one,

AMjNljF¼I ¼ k0djMdlN þ 2l0dljdMN � 2l0

@RlN

@FjM

����
F¼I

¼ k0djMdlN þ l0dljdMN þ l0dlMdjN: (A9)
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