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• A wave-based boundary control strategy on the large cable net structure is proposed.
• Stability results are given with disturbances coming from the external boundary.
• Dynamic responses of a planar cable net structure are numerically analyzed.
• Structural vibration can be controlled effectively by applying our proposed strategy.
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a b s t r a c t

Large cable net structures have been widely applied in aerospace engineering due to the
feature of light-weight, high packaging efficiency, and high thermal stability. Structural
vibrations induced by a variety of disturbances are inevitable in the space environment,
resulting in the requirement of effective vibration control strategies for large cable net
structures. Since the large cable net structures have many closely spaced vibrational
modes in the range of low frequencies, traditional modal based control may cause modal
truncation and spillover problems. In this paper, a wave-based boundary control strategy is
adopted and its effectiveness to control the vibration of cable net structures is investigated,
by transfer function analysis and numerical methods. It is found that the structural vibra-
tion can be absolutely resisted by applying the wave-based boundary controllers onto all
the exterior nodes, when disturbances come from the external boundaries of the cable net.
Our results in this paper can provide a theoretical basis for the vibration control of large
cable net structures.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Large cable net structures, known as a type of flexible structures, can be easily packaged in a small volume and provide
high stiffness when stretched. Besides, cable net structures possess the features of light-weight and high thermal stability,
resulting in wide applications in aerospace engineering. For example, the AstroMesh reflector family, fabricated by the
Northrop Grumman Corporation, has been used in many renowned projects such as Thuraya, INMARSAT 4, and MBSAT,
c.f. [1]. During the usage in the space environment, structural vibrations would be caused by a variety of disturbances,
including alternating thermal loads, attitude maneuvers of the spacecraft and impact from space debris [2]. However, the
damping of the cable net structures is such low that the introduced vibrations are hard to decay, which will influence the
surface accuracy of the reflectors severely. Hence, an efficient vibration control strategy on large cable net structures is
required.
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The vibration control of flexible structures can be implemented by active or passive methods. However, passive methods
can be sensitive to resonance frequencies, may be bulky, and may not perform well at low frequencies [3]. In comparison,
active methods have the potential to overcome the performance limitations of passive methods [4,5]. The most widely
used method for active vibration control of flexible structures is based on modal control theory, where the structural
dynamic responses are considered as the superposition of all vibrational modes [6–9]. Modal-based active vibration control
methods try to attenuate the amplitudes of the modal displacement, and the number of considered vibration modes must
be determined before the controller design. With the increasing scale of the cable net structure, close modes of the flexible
structure exist in the range of low frequencies [10], making it hard to deal with the modal truncation problem. In addition,
dynamic responses of a large flexible structure do not immediately spread to the entire structure under an impact or a
disturbance, but in a gradual manner of wave propagation [2]. Consequently, the modal control methods are generally
ineffective.

A wave-based theory is proposed to control the vibration of large space structures by Von Flotow et al. [11], where the
structural elastic dynamic responses are regarded as the superposition of two traveling waves along opposite directions.
Quite a few wave-based active control methods, such as traveling wave control [11], wave-absorbing control [12], active
sink method [13], have been proposed since 1986. These active control strategies try to stop the formation of vibrations by
wave cancellation. Since the controllers are designeddirectly based onwave equations, thewave-basedmethods have shown
the abilities to avoid high-frequency spill andmodal truncation comparing with the traditional modal control methods [14].

Boundary control has the ability to remove the spillover problem since the control is proposed on the base of the original
distributed-parameter systems [15], whose boundary affects all the flexible modes [16]. The wave-based boundary control
method has shown great power and simplicity in the vibration control of flexible structures. In Ref. [17], the actuator is
located at one end of the structure of the beam-like mass–spring arrays to control its planar position while absorbing the
vibration by canceling the outgoingwaves. In Ref. [18], the torsional vibrations in drill strings are controlled by decomposing
the drill string dynamics into two traveling waves and absorbing the wave traveling in the direction of the top drive. In
Ref. [19], the flexural vibration of a slender structure is controlled by the use of an adaptive anechoic termination, which is
fulfilled by applying force determined by a feed-forward adaptive control that uses estimates of the incident and reflected
waves as reference and error signals. Unfortunately, the wave-based boundary control method on large cable net structures
still lacks. This motivates us to find a new vibration control strategy for cable net structures.

In a real cable network antenna reflector, the cable ends are fixed at the ring truss, which is connected to the satellite
by a deployable mast. Disturbances are most frequently generated during attitude maneuver or orbit transfer and then
transmitted into the cable net from the boundary truss. Thus, in this paper, disturbances are assumed to come from the
external boundaries of the cable net. We adopt a wave-based boundary control strategy and its effectiveness to control
the vibration of space cable net structures is investigated. The paper is organized as follows. Section 2 presents the motion
equations of a planar cable net structure and gives thewave-based boundary control strategy. In Section 3, transfer functions
from the disturbance to the displacement of the cables are derived and pole analysis is given to express the stability results
of the wave-based boundary control strategy. In Section 4, the Lax–Friedrichs scheme is adopted to analyze the out-of-plane
vibration of the cable net structures and numerical simulations are carried out to show the effectiveness of the wave-based
boundary control strategy. Finally, the conclusions are made.

2. Problem formulation

2.1. Model descriptions and assumptions

To simplify the study on the proposed wave-based vibration control methods of cable nets, we consider a planar cable
net structure with rigid supports, consisting of triangle-faceted mesh in a periodic pattern, as shown in Fig. 1. Note that the
network has only one cable at each boundary point since we adopt the boundary control strategy which applies to the end
of each boundary cable. The planar cable net structure can be described by a directed graph G with its edges denoted by E =

{e1, e2, . . . , e30}, vertices denoted byV = {v1, v2, . . . , v25}, and edge orientations illustrated in Fig. 1.We denoteVint andVext
as the sets of interior and exterior nodes, respectively. Seen from Fig. 1, Vint = {v1, . . . , v7}, Vext = {v8, . . . , v25}. Similarly,
Eint and Eext denote the sets of interior and exterior edges, respectively, where Eint = {e1, . . . , e12}, Eext = {e13, . . . , e30}.

Some assumptions are first made for the planar cable net structure. All the cables are assumed undamped and the effect
of gravity on the structural response is ignored, due to the space environment. We also adopt the same assumptions as
Ref. [20]. In order to ensure a high surface accuracy of the reflector, the cables are usually highly pre-stressed to avoid cable
slackening after the antenna is deployed. The high pre-tensioning cable nets are considered as weakly nonlinear systems
comparing with single cable [14,21]. Giaccu et al. [22] give a malfunctioning measure to evaluate the deviation from a
linear behavior of in-plane cable networks in the absence of slackening effect. It is indicated in that reference that for a
given vibration amplitude, the minimum pre-tensioning force can ensure the linear dynamic behavior of the cable network.
Thus, the planar cable net can be regarded as linear systems under the vibrations with small amplitude and modal coupling
between in-plane and out-of-plane vibrational modes is therefore neglected. In the high pre-tensioning cable net, each cable
element is in a taut state. Hook’s law of the materials in the cable is valid for the linear system with small amplitude. It
is pointed out in Ref. [23] that cable flexural stiffness does not greatly affect the response of a taut cable. We therefore
consider the taut cable as the string with constant parameters in this study. In addition, the cable ends of a reflector can be
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Fig. 1. Schematic of a planar cable net structure with numbered nodes and edges.

considered to be fixed. As a result, the out-of-plane modes dominate in the low-frequency range and the in-plane modes
can be neglected in that range [6,24]. The concentrated mass at the junctions may decrease the modal frequencies of a cable
network structure as pointed out in Ref. [25]. However, similarly to the previous studies on the vibration control of space
cable network structures [6,7,14,26], in order to simplify our object, we also neglect the effect of mass on the vibration in
space cable net structures. We first provide themotion equations of the cable net structure governed by the wave equations,
then show the control strategy based on wave theory.

2.2. Motion equations

The linear one-dimensional wave equation for each taut string in the cable net structure is

Tk
∂2wk(t, x)

∂x2
− ρk

∂2wk(t, x)
∂t2

= f ke (t, x), x ∈ (0, Lk), t ∈ R+, (1)

where k = 1, 2, . . . , 30 means the numbers of the strings (also indices of the edges as shown in Fig. 1). wk(t, x) represents
the transversal displacement of the kth string (edge ek). t is the time and x means the local coordinate along the kth string.
The positive direction of x corresponding to each string is illustrated by the arrows in Fig. 1, so that x = 0 corresponds to the
start and x = Lk corresponds to the end of each string. Tk, Lk, and ρk represent the generic tension, the length, and the linear
density of the kth string, respectively. f ke (t, x) is the out-of-plane disturbance force applied to the kth string. In the following,
f ke (t, x) = 0 for k = 1, . . . , 12, since we investigate the vibration control of the cable net structure when disturbances come
from the external boundary cables. R+ denotes the set of all positive real numbers.

Let x = Lkx̃ and denote wk(t, Lkx̃) = w̃k(t, x̃), then Eq. (1) can be normalized to [27]

c̃2k
∂2w̃k(t, x̃)

∂ x̃2
−

∂2w̃k(t, x̃)
∂t2

= f̃ ke (t, x), x̃ ∈ (0, 1), t ∈ R+, (2)

where c̃k = (T̃k/ρ̃k)1/2 is the normalized wave velocity, and T̃k = Tk/Lk, ρ̃k = Lkρk are the normalized tension and linear
density. f̃ ke (t, x) = f ke (t, x)/ρk.

In the following, we assume the length of all the edges of the graph G is 1, i.e. the governing wave equations are
normalized, where the tilde symbols in the parameters are removed. So the motion of each string in the entire cable net
structure is governed by

c2kw
k
xx(t, x) − wk

tt (t, x) = f ke (t, x), in R+
× (0, 1), (3)

where the subscripts t and x refer to the partial derivatives of wk(t, x) with respect to time and space, respectively.
The equations at all of the internal nodes should meet continuity conditions of displacement and equilibrium conditions,

while the equations at the exterior nodes should meet the boundary conditions.
For the central node v1, the continuity condition of displacement is

wi(t, 0) = wj(t, 0), ∀i, j ∈ Iv1 , t ∈ R+ (4)
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and the equilibrium condition is∑
i∈Iv1

Tkwi
x(t, 0) = 0, t ∈ R+, (5)

where i, j mean the numbers of the interior strings, Iv1 denotes the set of numbers of the strings adjacent to node v1, and
Iv1 = {1, 2, 3, 4, 5, 6}.

For internal node vi, i = 2, . . . , 7, the continuity condition of displacement is

wi1 (t, 1) = wi2 (t, 1) = wi3 (t, 0) = wi4 (t, 0) = wi5 (t, 0) = wi6 (t, 0) (6)

and the equilibrium condition is

Ti1w
i1
x (t, 1) + Ti2w

i2
x (t, 1) − Ti3w

i3
x (t, 0) − Ti4w

i4
x (t, 0) − Ti5w

i5
x (t, 0) − Ti6w

i6
x (t, 0) = 0, t ∈ R+, (7)

where (i1, i2, . . . , i6) is the set of numbers of the strings adjacent to node vi, i = 2, . . . , 7, (i1, i2, . . . , i6) ∈ {(2, 7, 15, 16,
17, 8), (3, 8, 18, 19, 20, 9), (4, 9, 21, 22, 23, 10), (5, 10, 24, 25, 26, 11), (6, 11, 27, 28, 29, 12), (1, 12, 30, 13, 14, 7)}.

Neumann boundary conditions, namely, the normal derivative of displacement solutions are taken on the boundary of
the domains, are applied at all the exterior nodes and can be described as

Trwr
x(t, 1) = ur (t) + f rn (t), t ∈ R+, (8)

where ur and f rn represent the normalized out-of-plane control force and disturbance force (their actual values should
be multiplied by Lk) applied at the end of the rth string, respectively. r means the number of the exterior strings, and
r = 13, 14, . . . , 30.

The initial conditions are

wk(0, x) = wk
0(x), wk

t (0, x) = wk
1(x), x ∈ (0, 1). (9)

where wk
0(x) and wk

1(x) for the interior strings are equal to zero to avoid standing waves in the circuits.
Eqs. (3)−(9) compose an initial–boundary value problem, which describes the dynamics of the planar cable net structure

with boundary control when it experiences disturbance forces at the boundary cables.

2.3. Wave-based boundary control strategy

In this paper, we adopt a boundary control method similar to thewave-absorbingmethod, which is one type of thewave-
based vibration control methods, as the control strategy for the cable net structure. The idea of wave-absorbing control is to
absorb the reflected waves at the boundaries of the exterior cables. If all the waves are absorbed, no vibration will be formed
in the entire cable net structure.

First, we use a simple model of a single string to explain the mechanism of the wave-absorbing control. The normalized
wave equation for this string is given as

wtt (t, x) = c2wxx(t, x), in R+
× (0, 1). (10)

Taking Laplace transforms of Eq. (10) with zero initial condition w(0, x) = 0, the resulting boundary value problem is
described by equation

s2ŵ(s, x) = c2
d2ŵ(s, x)

dx2
. (11)

The general solution of Eq. (11) is

ŵ(s, x) = Aexs/c + Be−xs/c (12)

where Aexs/c and Be−xs/c are considered as two waves traveling in the negative and positive directions along the string,
respectively.

Then, applying Neumann boundary type control onto the end (x = 1) of the string, whose form in the time domain is
given as

Twx(t, 1) = u(t), (13)

where T is the normalized tension and u(t) is the control law to be determined.
The wave-absorbing control, similar to D.L. Russell’s work [28], takes the transverse velocity at the end of the string as

the feedback signal of the control law, i.e.

u(t) = −Kwt (t, 1). (14)
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Combining Eqs. (13) and (14), we get the closed-loop boundary condition, which expressed in the complex frequency
domain is

dŵ(s, 1)
dx

= −
s
c
ŵ(s, 1), (15)

if we choose K = T/c.
Taking Eq. (12) to the closed-loop boundary condition Eq. (15), the solution under control is given as

ŵ(s, x) = Be−xs/c . (16)

This solution only contains one wave traveling in the positive direction, not satisfying the form of vibration. When the wave
travels by the controlled point, the reflected wave (wave traveling in the negative direction) is canceled and the transmitted
wave (wave traveling in the positive direction) is passed by. The waves seem to be absorbed at this point and the energy is
also dissipated.

Now consider the cable net structure. The waves are transmitted from the external to the internal along the strings, and
then continue to propagate from one string to the others according to certain laws. Similar to the simple single string with
wave-absorbing control, the control strategy at every exterior node of the cable net structure is

ur (t) = −Krw
r
t (t, 1), r = 13, . . . , 30, (17)

where Kr > 0. The aim of this control strategy is to absorb or partially absorb the outgoingwaves at the exterior nodes. Thus,
the effect of disturbance will be gradually weakened whenever the wave generated by the disturbance passes through these
exterior nodes.

Here the wave-based boundary control strategy is a collocated control method with velocity feedback. For physical
implementation, the collocated control architecture can be attached near the support corners [16,29]. Ref. [14] pointed
out that collocated actuating and sensing elements can be achieved by active cable structures [7] or by a tendon actuator
collocated with a force sensor [30]. The method has been proposed to the vibration control of membrane structures [29]
and axially moving strings [16]. It is noted that our wave-based boundary control with velocity feedback is exactly the same
as a viscous damper tuned to impedance matching the characteristic impedance of the string attached at the end [31]. The
collocated control method with velocity feedback can also be phrased in term of impedance matching, namely,

Kr = −ur (t)/wr
t (t, 1) = T/c, r = 13, . . . , 30, (18)

where Kr is the best impedancematching. However, the outgoingwaves can also be absorbed by some othermethods such as
the non-collocated controllerwith displacement feedback [16],which is different from the velocity feedbackwith impedance
matching.

3. Transfer function analysis of the controlled cable net

Unlike lumped-parameter systems, whose transfer functions are rational functions, the transfer functions of distributed-
parameter systems are irrational ones. Ref. [32] illustrates the differences between the irrational transfer functions and the
rational transfer functions and points out that boundary conditions have strong effects on the dynamics and the properties
of the transfer function, such as the location of poles and zeros. In this section, we derive the transfer functions from the
disturbances to the displacement of the cables in the cable net structure; and give the stability results of the structure under
wave-based boundary controls by pole analysis.

When the normalized tensions Tk and linear densities ρk of the cables are different, the transfer functions are quite
complicated, or even hard to be obtained. Here for simplicity of showing the explicit transfer functions and analyzing the
distributions of their poles, we first consider Tk and ρk in each string to be the same, also resulting in the samewave velocity
in each string. The same tension and wave velocity are denoted by T and c , respectively. Then, in Section 4, we will discuss
the strings with different tensions, linear densities, and lengths by numerical method.

3.1. Disturbance applied at the exterior nodes

In this situation, f ke (t, x) = 0 and f rn (t) ̸= 0. Taking Laplace transforms of Eqs. (3)−(8) and Eq. (17) with zero initial
condition wk(·, 0) = 0 and denoting the Laplace transforms of wk and f rn by ŵk and f̂ rn , respectively, the resulting equations
are

c2
d2ŵk(s, x)

dx2
− s2ŵk(s, x) = 0, x ∈ (0, 1), (19)

ŵi(s, 0) = ŵj(s, 0), ∀i, j ∈ Iv1 , (20)∑
i∈Iv1

dŵi(s, 0)
dx

= 0, (21)
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ŵi1 (s, 1) = ŵi2 (s, 1) = ŵi3 (s, 0) = ŵi4 (s, 0) = ŵi5 (s, 0) = ŵi6 (s, 0), (22)
dŵi1 (s, 1)

dx
+

dŵi2 (s, 1)
dx

−
dŵi3 (s, 0)

dx
−

dŵi4 (s, 0)
dx

−
dŵi5 (s, 0)

dx
−

dŵi6 (s, 0)
dx

= 0, (23)

T
dŵr (s, 1)

dx
= ûr (s) + f̂ rn (s), (24)

ûr (s) = −Kr sŵr (s, 1), (25)

where the values of k, i1, i2, i3, i4, i5, i6 and r are the same as aforementioned. The general solution of the ordinary differential
equation (19) is

ŵk(s, x) = Akexs/c + Bke−xs/c, (26)

where Ak and Bk are the coefficients determined by the boundary conditions (20)–(25). Combining Eqs. (20)–(26), by some
calculations, we obtain Ak and Bk, which are expressions of f̂ rn . Then substituting Ak and Bk into Eq. (26), the response of the
kth string will be obtained regarding f̂ rn , i.e.

ŵk(s, x) =

30∑
r=13

Gk,r
n (s, x)f̂ rn (s), (27)

where Gk,r
n (s, x) represents the transfer function from the force applied at the outer end of the rth string to the displacement

at x(0 ≤ x ≤ 1) of the kth string.
Due to linearity, we only consider the disturbance force applied at the outer end of the 16th string, i.e. f rn (t) = 0, r =

13, . . . , 15, 17, . . . , 30, and f 16n (t) = f (t). We choose the 2nd and the 16th string to explicitly show their transfer functions,
while the rest are in the similar forms. When Kr = T/c , the transfer functions from f to the displacement of the mentioned
strings at x are

G2,16
n (s, x) =

c(81e−
(2−x)s

c + 81e−
(3−x)s

c + 63e−
(4−x)s

c + 21e−
(5−x)s

c − 2e−
(6−x)s

c )

6(3 + e−
s
c )(3 − e−

s
c )(3 + 2e−

s
c )(3 + e−

s
c + 2e−

2s
c )Ts

−
c(54e−

(2+x)s
c + 36e−

(3+x)s
c + 48e−

(4+x)s
c + 26e−

(5+x)s
c )

6(3 + e−
s
c )(3 − e−

s
c )(3 + 2e−

s
c )(3 + e−

s
c + 2e−

2s
c )Ts

,

(28)

G16,16
n (s, x) =

c(243e−
(1−x)s

c + 243e−
(2−x)s

c + 189e−
(3−x)s

c + 81e−
(4−x)s

c − 24e−
(5−x)s

c − 12e−
(6−x)s

c )

6(3 + e−
s
c )(3 − e−

s
c )(3 + 2e−

s
c )(3 + e−

s
c + 2e−

2s
c )Ts

−
c(162e−

(1+x)s
c + 162e−

(2+x)s
c + 180e−

(3+x)s
c + 96e−

(4+x)s
c + 26e−

(5+x)s
c + 14e−

(6+x)s
c )

6(3 + e−
s
c )(3 − e−

s
c )(3 + 2e−

s
c )(3 + e−

s
c + 2e−

2s
c )Ts

.

(29)

The poles of these transfer functions, by some mathematical calculations, are composed by

0, c(ln
1
3

+ iNπ ), c(ln
2
3

+ i2Nπ ) , c(ln
2
√
6

6
+ i(± arctan(

√
23) + 2Nπ )) ,N = 0, ±1, ±2, . . . (30)

All those transfer functions have a zero pole and infinitely many complex poles with a negative real part, which represent
the rigid mode and the flexible modes with damping, respectively. Since all the flexible modes have damping, the energy of
the strings will finally decay to zero and the induced vibration can be resisted.

Now consider a situation where only one external cable with fixed outer end experiences no disturbance (Take the 15th
string for example), while the other external cables may still experience disturbance from the exterior nodes. We further
check the stability of the net structure under controls. The boundary conditions for the external cables (Eq. (24)) becomes

ŵ15(s, 1) = 0, T
dŵr (s, 1)

dx
= −Kr sŵr (s, 1) + f̂ rn (s), r ̸= 15. (31)

Substituting Eqs. (20)–(23) and Eq. (31) into Eq. (26), the solutions of the responses in the complex frequency domain can
be obtained. When Kr = T/c , the transfer function from the force disturbance applied at the outer end of the 16th string to
the displacement of the 2nd string is expressed as follows, while the others are of the familiar form.

G2,16
n1 (s, x) =

c(81e−
(2−x)s

c − 18e−
(4−x)s

c − 42e−
(5−x)s

c − 23e−
(6−x)s

c + 2e−
(7−x)s

c )

2(243 + 27e−
2s
c − 108e−

3s
c − 96e−

4s
c − 12e−

5s
c − 14e−

6s
c )Ts

−
c(54e−

(2+x)s
c − 18e−

(3+x)s
c + 12e−

(4+x)s
c − 22e−

(5+x)s
c − 26e−

(6+x)s
c )

2(243 + 27e−
2s
c − 108e−

3s
c − 96e−

4s
c − 12e−

5s
c − 14e−

6s
c )Ts

.

(32)
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The characteristic polynomial is more sophisticated than that of G2,16
n (s, x). It is obvious to find that s = 0 is a pole of the

transfer function, while the other poles are determined by the function of the following form

p(s) = aN + aN−1e−s/c
+ · · · + a1e−(N−1)s/c

+ a0e−Ns/c, aN ̸= 0 (33)

It is important to know whether each of the solutions of the equation p(s) = 0 has a negative real part. Let z = es/c , since
aN ̸= 0, z ̸= 0, then p(s) = 0 is equal to p(z) = 0, where p(z) is of the following form

p(z) = a0 + a1z + a2z2 + · · · + aN−1zN−1
+ aNzN (34)

From Jury stability criterion [33], it is easy to check whether all the solutions associated with p(z) = 0 are located inside the
unit circle or not, i.e. whether |z| < 1 or not, by the coefficients an in Eq. (34). If |z| < 1, then s, i.e the poles of the transfer
function, lie in the left half s-plane. By this method, we find that G2,16

n1 (s, x) has a zero pole and infinitely many complex poles
with negative real parts. So the vibration can also be resistedwhen all the outer ends of the external cables, which experience
disturbances, are applied with our boundary control strategy.

When the outer end of an external cable without control experiences disturbances, the transfer function is not available,
since the boundary condition at this end changes from a forced boundary condition to a fixed boundary condition. In this
situation, this stability analysis is carried out by using a numerical method (shown in Section 4). It is found that the induced
waves cannot be absolutely absorbed and result in the vibration in the cable net.

3.2. Disturbance applied at the exterior edges

In this situation, f rn = 0 and f ke (t, x) ̸= 0. Due to linearity, we only consider the disturbance force applied on the 16th
string. While the other strings experience no disturbances. Thus, f ke (t, x) = 0, k ̸= 16. Let f 16e (t, x) = δ(x − x0)f (t), where
0 < x0 < 1 and δ(·) is a Dirac delta function. Denoting the Laplace transform of f by f̂ , then Eq. (19) becomes

c2
d2ŵk(s, x)

dx2
− s2ŵk(s, x) = 0, x ∈ (0, 1), k ̸= 16, (35)

c2
d2ŵ16(s, x)

dx2
− s2ŵ16(s, x) = δ(x − x0)f̂ (s) , x ∈ (0, 1). (36)

Combining Eqs. (20)–(25), Eqs. (35)–(36) with f rn = 0, in a similar way, we can obtain the transfer functions from the
disturbance to the displacement of the strings. We choose the 2nd and the 16th string to explicitly show their transfer
functions. When Kr = T/c , these transfer functions are expressed as
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G16,16
e (s, x) =

c(243e−
xs
c + 243e−

(1+x)s
c + 189e−

(2+x)s
c + 81e−

(3+x)s
c − 24e−

(4+x)s
c − 12e−

(5+x)s
c )

6(3 + e−
s
c )(3 − e−

s
c )(3 + 2e−

s
c )(3 + e−

s
c + 2e−

2s
c )Ts

−
ce−

(x+2x0)s
c (162 + 162e−

s
c + 180e−

2s
c + 96e−

3s
c + 26e−

4s
c + 14e−

5s
c )

6(3 + e−
s
c )(3 − e−

s
c )(3 + 2e−

s
c )(3 + e−

s
c + 2e−

2s
c )Ts

, x0 ≤ x ≤ 1.

(39)

Note that the only difference between G2,16
e (s, x) and G2,16

n (s, x) is the item e−(x0−1)s/c , which represents a time delay,
i.e. the response of G2,16

e (s, x) is earlier than that of G2,16
n (s, x) and the time difference is t = (1− x0)/c. The poles of G2,16

e (s, x)
and G16,16

e (s, x) are the same as those of G2,16
n (s, x) and G16,16

n (s, x). All the flexiblemodes have damping, so the inducedwaves
can be absorbed and vibration will not form in the cable net.

Now consider the wave-based boundary controllers are applied at the outer ends of all the external cables except the end
of one string (the 15th or 16th string), while the disturbance is applied at x0 of the 16th string. The boundary conditions are
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similar to Eq. (31). When the only one uncontrolled string is the 15th string, the transfer function from the force disturbance
to the displacement of the 2nd string is expressed as follows,
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When the 16th string is the only one uncontrolled string, the corresponding transfer function is
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(41)

where γ = x + x0 and η = x − x0.
By Jury stability criterionwe find that bothG2,16

e1 (s, x) andG2,16
e2 (s, x) have infinitelymany complex poleswith negative real

parts. However, in the denominator of G2,16
e2 (s, x) there is an item 1 + e−s/c , which relates to infinitely many pure imaginary

poles: ic(2N+1)π,N = 0, ±1, ±2, . . .. In other words, all the flexiblemodes of G2,16
e1 (s, x) have damping, while the damping

does not exist for infinitely many flexible modes of G2,16
e2 (s, x). So when the disturbance is applied at x0 of the 16th string, the

induced waves can be absolutely absorbed or just be partially absorbed if the only one uncontrolled string is the 15th string
or the 16th string, respectively. Fewer controllers are possible to resist the formation of vibration induced by the disturbance
applied at the exterior edges, but the locations of the missing controllers should be carefully chosen. This result will also be
verified by the numerical method in Section 4.

4. Numerical simulations

In order to verify the effectiveness of the wave-based boundary control strategy, the Lax–Friedrichs scheme is employed
to analyze the out-of-plane vibration of the planar cable net structures. The numerical scheme for the cable net structure is
firstly presented, where the normalized tension and linear densities are the same in each string (so that the normalizedwave
velocities are also the same). The structural dynamic responses, with no control and several different wave-based boundary
control strategies, are then compared and analyzed. Case studies are also conducted when the physical and geometrical
parameters in each string are different.

4.1. Lax–Friedrichs scheme for the planar cable net structure

The Lax–Friedrichs scheme, which is an FTCS (forward in time, centered in space) method for the numerical solution of
hyperbolic partial differential equations, was first proposed in Ref. [34]. It is explicit and first order accurate in time and
first order accurate in space, provided the initial values and boundary values are sufficiently-smooth functions. Under these
conditions, themethod is stable if and only if the Courant number is less or equal to 1. In the case that the initial or boundary
values have discontinuities, the scheme displays strong dissipation and dispersion which must be noted.

Applying this scheme, the iterative equation for ḟ = cg ′ (superimposed dot and prime respectively mean time and space
derivative) is represented as

f q+1
p =

1
2
(f qp+1 + f qp−1) +

α

2
(gq

p+1 − gq
p−1), (42)

where p and q represent the steps of the discretized space and time on a grid, respectively, and α = c∆t/∆x is the Courant
number, which should not exceed 1 for numerical stability.

As for the cable net structure,we first consider the disturbance applied at the exterior nodes, i.e. f ke (t, x) = 0. Let uk = cwk
x ,

vk = wk
t , then the homogeneous wave equations of Eq. (3) are transformed to first order equations

u̇k = cv′

k, v̇k = cu′

k. (43)
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The domain [0, T ] × [0, 1] is discretized into a grid xp = p · ∆x, p = 0, . . . ,m, tq = q · ∆t, q = 0, . . . , n for each string,
where ∆x = 1/m, ∆t = α · ∆x/c. Then uk(tq, xp) is represented by uq

k,p.
When the initial conditions are given, by applying the Lax–Friedrichs scheme Eq. (42) to Eq. (43), we can get the system

response by iterations⎧⎪⎨⎪⎩
uq+1
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1
2
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Note that some auxiliary points (uq
k,−1, v

q
k,−1, u

q
k,m+1, v

q
k,m+1), which are called ghost points (c.f. [35], section 1.4), are needed

to calculate the values of points at the boundaries (p = 0 and p = m). For the interior nodes and the exterior nodes with
different boundary conditions, the calculation on the values of the ghost points can be seen in Appendix A. Once v

q
k,p is known,

wk(tq, xp) can be calculated by

w
q+1
k,p = w

q
k,p + v

q
k,p∆t. (45)

When the disturbance is applied at a point of an exterior edge, the numerical scheme is similar to the procedure presented
above, except that the exterior edge is divided into two segments and another auxiliary node is presented. The above scheme
is implemented in Matlab for numerical analysis of the cable net structure.

4.2. Simulation results

We first study the wave-based boundary control of the cable net, where each string has the same tension T , the same
linear density ρ, and the same length L. They are all set to be 1. The parameters of the numerical scheme are as follows: the
time step ∆t = 0.01s, the Courant number α = 1 [36], and the space step ∆x = 0.01. Since Eqs. (8) and (17) represent a
transparent boundary conditionwhen Kr = T/c , i.e, the solution of the boundary value problem is exactly the solution of the
initial problem, whichmeans this boundary condition is numerically useless [37]. Thus, we set Kr = 0.99T/c , to appropriate
the absorbing boundary condition. The wave-absorbing control is achieved by the wave-based boundary control with this
feedback gain Kr in the numerical method.

Six different cases are studied: no control; wave-absorbing controls applied at all the exterior nodes (control strategy 1,
Fig. 2(a)); wave-based boundary controls applied at all the exterior nodes with feedback gains changed to be Kr = 0.5T/c
(control strategy 2, Fig. 2(a)); some exterior nodes (v8-v16) applied with wave-absorbing controls (control strategy 3,
Fig. 2(b)); wave-absorbing controls applied at all the exterior nodes except the exterior node v8, which experiences a force
disturbance (control strategy 4, Fig. 2(c)). wave-absorbing controls applied at all the exterior nodes except the exterior node
v15 in the string, which experiences a force disturbance (control strategy 5, Fig. 2(d)).

Two force disturbances are applied to the cable net simultaneously. One is applied at x = 0.4 of the 23rd string and the
other is applied at the outer end of the 16th string, they are denoted by f1 and f2, respectively (see Fig. 2). The normalized
values of the two forces are f (t) = 10 sin (10π t) (0 < t <= 0.2s) and f (t) = 0(t > 0.2s). All the strings have no initial
displacement and velocities. Thus, all the initial and boundary values are smooth functions in the time intervals [0, 0.2] and
(0.2,∞], separately. Since the Courant number is 1, the numerical method is stable and the numerical solutions approximate
the real system quite well. At t = 0.2s, the force f2 applied at the outer end of the 16th string is removed, resulting in f (t)
equal to zero. The boundary condition of the exterior node without control is therefore continuous and both the dissipation
and dispersion can be prevented.

Considering the cases where the structure is uncontrolled and with control strategies 1, 3 and 5, the dynamic responses
of the cable net structure at time t = 0.12 s, t = 0.24 s, t = 0.80 s, t = 10.02 s, and t = 20.02 s are shown in Fig. 3. The
Figure shows that control strategies 1 and 3 can resist the formation of vibration induced by disturbances from the external
boundary cables, while control strategy 5 cannot. This can be explained as follows.

Boundary control is applied at all the exterior nodes of the structure, which can affect all the flexible modes, thus control
strategies 1 and 3 are able to affect the flexible modes activated by the force disturbance f2 applied at the exterior node. On
the other hand, we can see from Fig. 3 that f2 generates an one-way wave, while f1 generates two waves traveling in the
opposite directions (t = 0.24 s). When node v15 is under wave-absorbing control, the outgoing wave will be absorbed. So
only a one-way wave will travel into the internal of the cable net (Fig. 3(b) and (c), t = 0.80 s). The effect of f1 is equivalent
to that of f2 when node v15 is under wave-absorbing control. In other words, control strategies 1 and 3 are also able to affect
the flexible modes activated by f1 when the boundary conditions of the external cables are unchanged.

However, the effect of f1 cannot be equivalent to that of f2 when control strategy 5 is adopted (In Fig. 3(d), t = 0.8 s),
since the outgoing wave generated by f1 cannot be absorbed by this control strategy. As a consequence, control strategy 5
cannot resist the formation of the vibration induced by the disturbances from the exterior cables.

When the feedback gain of thewave-based boundary control at node v15 is not equal to T/c , the outgoingwave is partially
absorbed and the rest is reflected, without changing its sign. The effect of f1 is also equivalent to generate two one-waywaves
at the exterior nodes, which travels into the internal of the cable net at different time. Thus, control strategy 2 is also able to
resist the formation of the vibration, which is in consistent with the result obtained by transfer function analysis.
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(a) (b)

(c) (d)

Fig. 2. The locations of the wave-based boundary controllers and the force disturbances: (a) control strategies 1 and 2; (b) control strategy 3; (c) control
strategy 4; and (d) control strategy 5. The circles and diamonds represent the locations of the controls and the force disturbances, respectively.

The total energy of the cable net structure for the six cases is numerically computed, by applying the trapezoidal rule
(see Appendix B). As shown in Fig. 4, the total energy increases at the beginning, due to the work done by the disturbance
forces. Then the total energy becomes conservative when the net is uncontrolled, or decreases when the net is applied
with wave-based boundary controllers. In comparison, only control strategies 1, 2, and 3 steer the total energy to zero. The
result indicates that the cable net structure can resist the formation of vibration under these control strategies when the
disturbances are applied at the exterior strings, which is consistent with the results obtained by pole analysis of the transfer
functions in Section 3. The energy of the cable net with control strategy 2 decays slower than that with control strategy
1, which reveals that control strategy 1 is more efficient than control strategy 2, i.e. wave-absorbing controllers are more
efficient thanwave-based boundary controllerswith feedback gains equal to 0.5T/c. The energy of the cable netwith control
strategy 3 finally decreases to zero. This result shows that it is possible to reduce the number of the wave-based boundary
controllers. However, the locations of the missing controllers must be carefully determined, otherwise, vibration may form
in the cable net (control strategies 4 and 5).

The energy in the 6th, the 16th, and the 23rd strings for the first 4 cases are shown in Figs. 5–7. For a specific string,
waves are traveling into and out of the string from time to time. The sudden incoming or outgoing of the waves causes the
fluctuations of the energy of the strings, as shown in Figs. 5–7 (especially in the no control case). By using control strategies
1, 2, and 3, the energy of the three strings in the cable net structure all decreases to zero. This means that the cable net
finally comes to rest in these three cases, while the non- dissipative energy causes the formation of vibration in the cable
net structure under no control.

In order to check the effectiveness of the wave-based boundary control strategies in the case of cables with different
physical and geometrical properties, we set the tension Tk, the linear densities ρk of each string with the values listed in
Table 1, while the lengths of each string are 1.

The parameters listed in Table 1 represent that the cables in the same line (see Fig. 1) have the same tension and the same
linear densities. This assures that the wave velocities in some of the strings are different. Note that the normalized and the
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Fig. 3. Comparison of the out-of-plane displacement of the entire cable net structure at different time for the three cases: (a) no control; (b) control strategy
1; (c) control strategy 3; and (d) control strategy 5, where the parameters in each string are the same.

Fig. 4. Comparison of the total energy in the cable net structure with time for the six cases, where the parameters in each string are the same.

non-normalized parameters Tk, ρk, and ck are the same in this situation. The data in the table retains two decimal places, but
some ck are actually irrational numbers.

We take the same six different cases as aforementioned, i.e. the cable net with no control, with control strategies 1, 2,
3, 4, and 5, with the same force disturbances and the same initial conditions as before. The simulation scheme is similar as
illustrated in Section 4.1, however, there are some differences. Since the wave velocities of each string are not the same, the
space steps for the strings are different according to ∆xk = ck∆t . Besides, the calculation of the ghost points values is more
sophisticated. In the following simulations, we set ∆t = 0.001s.
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Fig. 5. Comparison of the energy in the 6th string of the cable net structure with time for the first 4 cases, where the parameters in each string are the same.

Fig. 6. Comparison of the energy in the 16th string of the cable net structure with time for the first 4 cases, where the parameters in each string are the
same.

Table 1
Parameters of the strings in the cable net structure.

String Tk ρk ck String Tk ρk ck String Tk ρk ck
no. (N) (kg/m) (m/s) no. (N) (kg/m) (m/s) no. (N) (kg/m) (m/s)

1 1.00 1.00 1.00 11 1.20 0.80 1.22 21 1.80 0.20 3.00
2 0.40 1.60 0.50 12 0.20 1.80 0.33 22 1.00 1.00 1.00
3 1.60 0.40 2.00 13 1.00 1.00 1.00 23 0.60 1.40 0.65
4 1.00 1.00 1.00 14 0.20 1.80 0.33 24 1.20 0.80 1.22
5 0.40 1.60 0.50 15 0.80 1.20 0.82 25 0.40 1.60 0.50
6 1.60 0.40 2.00 16 0.40 1.60 0.50 26 1.80 0.20 3.00
7 1.40 0.60 1.53 17 1.40 0.60 1.53 27 0.20 1.80 0.33
8 0.80 1.20 0.82 18 0.60 1.40 0.65 28 1.60 0.40 2.00
9 0.60 1.40 0.65 19 1.60 0.40 2.00 29 1.20 0.80 1.22
10 1.80 0.20 3.00 20 0.80 1.20 0.82 30 1.40 0.60 1.53

The total energy of the cable net structure for the six cases is shown in Fig. 8. It can be seen that the results are similar to
Fig. 4 except that the control efficiency of control strategy 5 is improved. The reason is as follows. According to Refs. [38,39],
the irrationality of ci/cj, where i and j are the indices of the strings in the circuit, can assure the waves not to be trapped in
that circuit while traveling. Due to the change of ci/cj, the waves escape from the circuits more easily.
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Fig. 7. Comparison of the energy in the 23rd string of the cable net structure with time for the first 4 cases, where the parameters in each string are the
same.

Fig. 8. Comparison of the total energy in the cable net structure with time for the six cases, where the parameters in some strings are different.

The energy in the 6th, 16th, and 23rd strings for the first 4 cases are shown in Figs. 9–11. Again, the results are similar
to Figs. 5–7, showing that control strategies 1, 2, and 3 are effective even if the cables are with different physical and
geometrical properties.

For vibrations induced by disturbances from the internal strings (strings in a circuit), the effectiveness of the wave-based
boundary control strategy is determined by the physical and geometrical properties of the cables, i.e Tk, ρk, and Lk. Once the
waves escape from the circuits while traveling, theywould be absorbed by thewave-based boundary controllers, i.e., control
strategies 1 and 2 are still effective; otherwise, the control strategies are ineffective. However, we can add a few more
controllers from the internal nodes to absolutely control the vibrations in this case, which need study further.

5. Conclusion

This paper studies the vibration control of large cable net structures and the effectiveness of the wave-based boundary
control strategies are investigated. For disturbance coming from the exterior boundary of the structure, the stability of the
structure with our proposed control strategy is proved by using pole analysis of the transfer function and the numerical
dynamic responses of the structure are achieved by using Lax–Friedrichs scheme. The results show that by imposing wave-
based boundary controls at all the boundary nodes, the disturbances coming from the external can be absolutely absorbed. As
a result, the structural vibration can be controlled efficiently. Comparing with the traditional modal control, the wave-based
boundary control strategy avoidsmodal truncation and spillover effect, providing new avenues for vibration control on large
cable net structures in many engineering fields.
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Fig. 9. Comparison of the energy in the 6th string of the cable net structure with time for the first 4 cases, where the parameters in some strings are
different.

Fig. 10. Comparison of the energy in the 16th string of the cable net structure with time for the first 4 cases, where the parameters in some strings are
different.

Fig. 11. Comparison of the energy in the 23rd string of the cable net structure with time for the first 4 cases, where the parameters in some strings are
different.
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Appendix A. Calculation of the ghost points values

The values of the ghost points around node v1 are calculated by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uq+1
1,−1

uq+1
2,−1

uq+1
3,−1

uq+1
4,−1

uq+1
5,−1

uq+1
6,−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1
3

⎡⎢⎢⎢⎢⎢⎣
2 −1 −1 −1 −1 −1

−1 2 −1 −1 −1 −1
−1 −1 2 −1 −1 −1
−1 −1 −1 2 −1 −1
−1 −1 −1 −1 2 −1
−1 −1 −1 −1 −1 2

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

uq
1,1

uq
2,1

uq
3,1

uq
4,1

uq
5,1

uq
6,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v
q+1
1,−1

v
q+1
2,−1

v
q+1
3,−1

v
q+1
4,−1

v
q+1
5,−1

v
q+1
6,−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1
3

⎡⎢⎢⎢⎢⎢⎣
−2 1 1 1 1 1
1 −2 1 1 1 1
1 1 −2 1 1 1
1 1 1 −2 1 1
1 1 1 1 −2 1
1 1 1 1 1 −2

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

v
q
1,1

v
q
2,1

v
q
3,1

v
q
4,1

v
q
5,1

v
q
6,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.2)

The values of the ghost points around vi, i = 2, . . . , 7 are calculated by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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where the value of (i1, i2, . . . , i6) is the same as Eq. (7).
The values of the ghost points for the fixed exterior nodes (without control) are calculated by

uq+1
k,m+1 = uq

k,m−1, v
q+1
k,m+1 = −v

q
k,m−1 (A.5)

The values of the ghost points for the exterior nodes which are applied with control law (17) and experiencing a
disturbance force f (t) (normalized) are calculated by

uq+1
k,m+1 =

(T 2
r + c2r K

2
r )u

q
k,m−1 + 2crKrTrv

q
k,m−1 − 2crTr f q+1

+ 2∆x(crKr + Trα)ḟ q+1

c2r K 2
r − T 2

r
,

v
q+1
k,m+1 =

−(T 2
r + c2r K

2
r )v

q
k,m−1 − 2crKrTru

q
k,m−1 + 2c2r Kr f q+1

− 2∆x(Tr + crKrα)ḟ q+1

c2r K 2
r − T 2

r
.

(A.6)
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where Kr ̸= Tr/cr , ḟ is the derivative of f with respect to time t. When the exterior node under control experiences no
disturbances, the values of the ghost points can be calculated by Eq. (A.6) with f q+1

= ḟ q+1
= 0. While when the exterior

node without control experiences a force disturbance, the values of the ghost points can be calculated by Eq. (A.6) with
Kr = 0.

Appendix B. Calculation of the total energy in the cable net structure by the trapezoidal rule

The energy of the kth string is

Ewk (t) =
1
2

∫ 1

0

(
ρk|w

k
t (t, x)|

2
+ Tk|wk

x (t, x)|
2
)
dx. (B.1)

where Tk and ρk are the normalized tension and the normalized linear density, respectively.
The space interval [0, 1] is discretized intom equally spaced panels for the string. By applying the trapezoidal rule to each

panel, the approximation to the energy of this string (Eq. (B.1)) at time tq becomes

Ewk (tq) =
1
2

m−1∑
p=0

∫ (p+1)∆x

p∆x

(
ρk|v

k(tq, x)|
2
+ Tk|ckuk(tq, x)|

2
)
dx

=
1
2

m−1∑
p=0

ρk

2

[
(|vq

k,p|
2
+ |uq

k,p|
2) + (|vq

k,p+1|
2
+ |uq

k,p+1|
2)

]
∆x

=
ρk

4

m−1∑
p=0

[
(|vq

k,p|
2
+ |uq

k,p|
2) + (|vq

k,p+1|
2
+ |uq

k,p+1|
2)

]
∆x.

(B.2)

After a summation of Ewk (tq), we can obtain the total energy of the cable net structure at time tq.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.wavemoti.2017.11.004.
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