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摘　  要：针 对 现 有 准 零 刚 度 隔 振 器 很 难 适 应 负 载 变 化 的 问 题，提 出 了 一 种 负 载 能 力 可 调 的 力 电 耦 合 曲 梁 准 零 刚

度隔振器 . 该隔振器主要由负电容分流压电纤维片以及余弦曲梁组成，通过改变负电容值调节曲梁非线性刚度即

可实现对隔振器承载能力的调控 . 采用模态叠加法和最小总势能原理，推导了压电曲梁的力−位移关系，并进行了

有限元验证 . 进一步，将压电曲梁连接 U 型外壁构成隔振器，建立了其简化解析模型和实体有限元模型，并分析其

在 不 同 负 载 下 的 隔 振 特 性 . 结 果 表 明，通 过 负 电 容 电 路 实 现 对 压 电 材 料 模 量 的 调 控，该 隔 振 器 能 够 在 不 同 负 载 下

产生所需的准零刚度特性，实现低频隔振 .
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Design and Analysis of Piezoelectric Quasi-Zero-Stiffness Vibration
Isolators for Different Loads
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Abstract：To address the challenge of limited adaptability to varying loads in existing quasi-zero-stiffness isolat-

ors,  this  study  designed  a  load-adjustable  piezoelectric  quasi-zero-stiffness  isolator.  This  isolator  primarily

comprised  a  piezoelectric  patch  with  an  externally  connected  negative  capacitance  shunt  circuit  and  a  cosine-

shaped curved beam. The nonlinear stiffness of the curved beam could be adjusted,  by modifying the negative

capacitance  value,  allowing  for  control  over  the  isolator’s  load-bearing  capacity.  Initially,  by  adopting  modal

superposition  and  minimum total  potential  energy  principle,  the  force-displacement  relationship  of  the  piezoe-

lectric  curved  beam  was  derived.  The  derived  relationship  accuracy  was  validated  through  comparison  with

finite element results. Subsequently, the piezoelectric curved beam was coupled with a U-shaped stiffer wall to

form the isolator. Both the simplified analytical model and the comprehensive finite element model of the isolat-

or  were  established  to  investigate  its  isolation  characteristics  under  various  loads.  The  results  indicate  that  the

regulation of the modulus of piezoelectric materials through negative capacitance circuits can generate the quasi-

zero-stiffness  characteristics  under  different  loads,  achieving  excellent  low-frequency vibration  isolation  per-

formance.
Key words：quasi-zero  stiffness；piezoelectric  material；negative  capacitance  circuit； low  frequency； isolation

vibration
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在日常生活和工程应用中，振动是普遍存在的

现象，而且通常被视为有害因素 . 在航空航天、机械

加工、超精密制造等许多领域中，比如：轮足式机器

人 [1]，振动会对加工精度产生影响，干扰设备的正常

运行，甚至在严重情况下会引起结构损坏 . 因此，采

用振动控制方法来抑制振动变得十分必要 . 振动控

制方法通常可以分为主动、半主动和被动三类. 其中，

主动和半主动振动控制方法需要传感器和控制系统，

这使系统变得更为复杂，并需要能量供应. 相比之下，

被动控制方法通过结构的刚度和阻尼特性来实现振

动隔离 [2]，具有系统简单和可靠性高的优点. 然而，传

统的线性隔振系统只能有效隔离 倍共振频率以上

的振动. 为了扩宽振动有效隔离区间、实现更好的振

动隔离效果，可以尝试降低线性系统的刚度，从理论

上 来 讲，这 样 能 够 降 低 共 振 频 率 . 但 是，降 低 刚 度

也会带来承载能力降低的问题. 因此，为了解决上述

矛盾，研究人员尝试在振动隔离系统中引入非线性

因 素 以 改 善 性 能，从 而 实 现 具 有 更 高 承 载 能 力 和

较 低 动 态 刚 度 的 特 性，以 获 得 更 好 的 振 动 隔 离 性

能 . 这种高静态低动态刚度性能简称为“高静低动”

特性 [3].
为了实现这种特性，研究人员提出将负刚度机

构引入到隔振系统，并且和正刚度机构并联以实现

准零刚度，这种准零刚度隔振器具有典型的“高静低

动”特性 . 这种设计使得在静态平衡位置附近，动态

刚度非常小，从而实现更好的振动隔离效果. 准零刚

度隔振器有多种组成形式，其中最经典的就是 CAR-
RELLA 等 [4] 和 KOVACIC 等 [5] 提出的三弹簧准零刚

度模型，由两个提供负刚度的斜弹簧与提供正刚度

的 竖 直 弹 簧 并 联 组 成 .  HAO 等 [6 − 8]、 ZHANG 等 [9]、

XU 等 [10]、DING 等 [11] 利用这种竖直弹簧与斜弹簧组

合的形式提出了单自由度准零刚度隔振原理模型，

并且对准零刚度隔振的原理进行了较为深入的研究.
LAN 等 [12] 也对三弹簧准零刚度隔振器进行了深入

研究，与之前研究不同之处在于他们设计了横向调

节机构并采用特殊的平面弹簧代替普通的螺旋弹簧，

以实现紧凑型结构设计，并对不同负载下的隔振性

能进行了研究. ZHOU 等 [13] 将凸轮、转子和弹簧等效

为三弹簧模型，通过凸轮和转子来提供负刚度，设计

出了准零刚度隔振机构. YE 等 [14] 提出了一种新的优

化凸轮滚子机构，通过增加凸轮的数量，使准零刚度

隔振器能够适应不同的载荷 . ZUO 等 [15] 提出了一种

抛物线凸轮滚子隔振器，进一步扩展了对凸轮负刚

度结构的研究 . 这些由机构组合得到的准零刚度隔

振器一个共性的不足是很难小型化和精密化 . 为了

解决上述问题，QIU 等 [16] 提出利用余弦曲梁的双稳

态特性实现负刚度或准零刚度，从而实现对小型元

件的振动控制 . 并且 QIU 在理论和实验上也证明了

余弦曲梁在受到横向载荷时，可以通过几何参数设

计实现负刚度，甚至直接准零刚度的特性. 这项研究

为后续的相关研究提供了启发，并随着增材制造技

术的不断发展，越来越多的研究人员开始关注这种

余弦曲梁结构 . 基于余弦曲梁的特性，ZHAO 等 [17] 设

计出了一种直接准零刚度隔振超结构，并通过增材

制造实现一体成型，取得了良好的低频振动抑制效

果. FAN 等 [18] 设计了一个准零刚度单元，其中正刚度

由一对半圆形的梁提供，而负刚度由余弦形状的曲

梁获得，并对超结构的性能进行了数值研究. 研究结

果表明，这种隔振设计方案具有较好的隔振效果，适

用于小型设备的隔振 . DALELA 等 [19] 通过将 2 个余

弦曲梁串联以提供负刚度，再加上一对半圆形梁提

供正刚度，构造了准零结构单元，然后，并联 4 个单

元形成了隔振平台，对其非线性动力学特性进行了

研究. 然而，这些结构都只能在设计的特定负载范围

内工作，一旦外接载荷发生变化，其隔振特性会严重

受到影响，需要重新设计组装 . 因此，需要开发一种

负载能力可调的准零刚度曲梁隔振器 . 在此背景下，

压电材料的特性为解决这个问题提供了新的思路 .

通过改变外接负电容分流电路，压电材料可以实现

对等效模量的大范围调控 [20]，从而为实现负载可调

的准零刚度曲梁隔振器提供了潜在解决方案.

本文提出了一种简单、紧凑的力电耦合曲梁准

零刚度隔振器设计方法. 然后，基于模态叠加法和最

小总势能原理，分析了压电曲梁的静力学特性，并利

用有限元仿真进行了验证. 最后，建立了隔振器的单

自由度简化模型和有限元完整模型，研究了其隔振

特性. 

1     力电耦合准零刚度隔振器设计
 

1.1     隔振器设计

本 研 究 中 的 力 电 耦 合 准 零 刚 度 隔 振 器 模 型 如

图 1（a）所示，由一个余弦形梁、两对压电纤维片和

U 型外壁构成. 压电曲梁的尺寸如图 1（b）所示，余弦

曲梁的预制形状为

w̄ = h/2[1− cos(2π (x− l/4))/ l]，
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lp tp

式中：l 为长度；b 为深度；t 为厚度；h 为跨高. 压电纤

维片长度为 、厚度为 以及有相同的深度为 b. 粘贴

压 电 纤 维 片 的 余 弦 形 梁 通 过 U 型 外 壁 连 接 形 成 单

元. 每个压电纤维片可以独立工作，其表面粘结在基

础梁上并接地，同时在电极之间连接了一个负电容

电路，如图 1（c）所示. 隔振器中曲梁的压缩量等于曲

梁跨高时为设计的工作区域，具有最小刚度，并且刚

度为初始刚度 5% 以下定义为准零刚度. 通过对曲梁

和压电纤维片的材料和几何参数设计，可以使其在

工作区域实现准零刚度特性.
 
 

V −Cn 

(a) 力电耦合准零刚度隔振器的组成

(b) 压电曲梁的几何尺寸

(c) 压电纤维片外接负电容电路

tp

lp

l

h

t

压电纤维片

U 型外壁

余弦曲梁
b

GND

图 1    力电耦合准零刚度隔振器模型

Fig. 1    Model of piezoelectric quasi-zero stiffness vibration isolator
  

1.2     压电纤维片位置优化设计

准零刚度曲梁隔振器在工作时，曲梁被压缩至

水平，所以可以假设梁为直梁来进行压电纤维片位

置的优化 . 压电材料的控制效果主要由机电耦合系

数决定，对于两端固支的直梁，其模态机电耦合函

数 [21] 为

Dr (Xi,Xi+1) = ϕ′r (X)
∣∣∣Xi+1

Xi
（1）

ϕr (X) = cos
√
λrX− cosh

√
λrX+

ηr(sin
√
λrX− sinh

√
λrX) ϕ′r (X)

λr

式 中 ： 直 梁 振 型 函 数

； 为其转角；X 为量纲一

的压电纤维片电极所在的位置坐标； 为量纲一特

征频率.
通过式（1）可以发现，模态机电耦合函数与铺设

压电纤维片两端的转角差成正比，将压电纤维片粘

贴在转角的最大值和最小值对应的位置之间，能够

实现最优的控制效果，如图 2 所示 . 因此，通过将压

电纤维片粘贴在 0.23l 和 0.77l 之间可以实现最佳控

制效果 . 本研究中的模型在该区域内粘贴压电纤维

片，但通过一个长度为 0.02l 的凸起将它们分隔开.
 
 

6

3

0

−3

−6
0 0.23 0.50 0.77 1.00

ϕ 1
′(X
)

X

ϕ1′(X )|
X i+1

X i

ϕ1′(X )|
X i+1

X maxi
( )

图 2    第一阶模态振型下转角与电极位置的关系

Fig. 2    Relationship  between  angle  and  electrode  position  under  the  first

mode shape
  

2     压电曲梁的静态特性分析
 

2.1     压电曲梁非线性力位移关系

对于隔振系统的静态特性分析，获得其非线性

力−位移关系至关重要 . 对于预形状梁，采用屈曲模

态作为基准可以很好地近似曲梁的力学行为 [16, 22]，所

以可以使用模态叠加法描述曲梁的变形 . 当曲梁受

到横向载荷时，主要产生变化的能量有：弯曲能、压

缩能和压力做功产生的势能. 因此，采用最小势能原

理研究其力−位移关系最为简便.

受压直梁的屈曲模态可以表示为

w (x) =
∑

i={1,2,3,..}
AiWi (x) （2）

Ai式中： 为第 i 阶模态的未知系数；Wi(x) = 1− cos
(
Ni

x
l

)
, i = 1,3,5 · · · ,

Ni = (i+1)πWi(x) =1−2
x
l
− cos

(
Ni

x
l

)
+

2
Ni

sin
(
Ni

x
l

)
, i = 2,4,6 · · · ,

Ni = 2.86π,4392π,6.94π · · ·

ZHOU 等 [13] 的研究表明，只截取一阶模态就能

够很好地描述其力学行为（考虑高阶模态的计算见

附录 A）. 曲梁上任一点的变形可以表示为

ŵ (x) = w̄ (x)−w1 (x) （3）

那么，梁中点的位移可以表示为

d
(

l
2

)
= w̄

(
l
2

)
−w1

(
l
2

)
= h−2A1 （4）

对于外接负电容电路的压电材料，其等效杨氏
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模量可以表示为

Esu
p (ω) = Eoc

p

(
1−

k2
31

1+ iωCs
pZsu (ω)

)
, Zsu (ω) = − 1

iωCn

（5）

Eoc
p k31

ω Cs
p

Zsu (ω) Cn

式中： 为压电纤维片开始状态下的杨氏模量；

为机电耦合系数； 为外界激励频率； 为压电纤维

片的本征电容； 为电容电路的阻抗； 为外接

负电容电路的电容值.

压电曲梁的弯曲能可以表示为

ub =2

Db

2

0.23lw
0

(
∂2w̄
∂x2
− ∂

2w1

∂x2

)2

dx+
Deff

2

0.49lw
0.23l

(
∂2w̄
∂x2
−

∂2w1

∂x2

)2

dx+
Db

2

0.5lw
0.49l

(
∂2w̄
∂x2
− ∂

2w1

∂x2

)2

dx

 （6）

Db = Eb
bt3

12
；Deff =

bEsu
p

[(
t+2tp

)3
− t3

]
+Ebbt3

12
式中： .

假设压电纤维片的变形量与被其覆盖的梁的变

形量相同，压电曲梁的压缩能可以表示为

us = 4
pp∆sp

2
+

pb∆sb

2
=

4Esu
p tpb

(
∆sp

)2

2(0.26l)
+

Ebtb (∆sb)2

2l
（7）

∆sp ∆sb式中： 和 分别为压电纤维片和基础梁的压缩

变形量.

∆sp = sp− s0 =
1
2

0.49lw
0.23l

[(
w′1

)2− (w̄′)2
]
dx （8）

∆sb = sb− s1 =
1
2

lw
0

[(
w′1

)2− (w̄′)2
]
dx （9）

sp sb

s0 s1

式中： 和 分别为压电纤维片和基础梁变形后的长

度； 和 分别为压电纤维片和基础梁的初始长度.

力做功产生的势能为

uf = − f d
(

l
2

)
（10）

系统的总能量可以表示为

utot = ub+us+uf （11）

根据最小势能原理：

dutot

dA1
= 0 （12）

则可以求出压电曲梁的非线性力位移关系：

f =
b

32l3

(
15.38Esu

p hpD2
11+EbtD2

21

) (
d3−3hd2+

2h2d
)
+

DbC11+DeffC21+DbC31

2l3
d （13）

式中： 

C11 =

0.23w
0

(
W
′′−W ′′

1

)2
dX = 1.998 3π4

C21 =

0.49w
0.23

(
W
′′−W ′′

1

)2
dX = 1.841 9π4

C31 =

0.5w
0.49

(
W
′′−W ′′

1

)2
dX = 0.159 8π4

D11 =

0.49w
0.23

(W1
′)2dX = 0.579 5π2

D21 =

1w
0

(W1
′)2dX = 2π2

W =
w
l
,W1 =

w1

l
,X =

x
l

 

2.2     材料和几何参数对压电曲梁非线性刚度的影

响规律

为了更简单地对刚度进行分析，可以将一些参

数进行量纲一化：

F =
f l3

EbIh
, P =

tp
t
, Q =

h
t
,S =

Esu
p

Eb
, ∆ =

d
h

（14）

量纲一化后的力位移关系可以整理为

F =
3
8

AQ2∆

∆− 3
2
+

√
1
4
− 4B

3AQ2

×∆− 3
2
−

√
1
4
− 4B

3AQ2

 （15）

式中：A = 15.38 S PD2
11+D2

21

B =C11+C21+C31+S C21

(
8P3+12P2+6P

)

(1,B/2)

(2,B)

从式（15）中可看出，压电曲梁的力位移特性主

要 取 决 于 压 电 纤 维 片 与 基 础 梁 结 构 的 厚 度 比（P）、

模 量 比（S）以 及 基 础 梁 跨 高 与 厚 度 的 比 值（Q）3 个

参 数 ，并 且 这 3 个 参 数 都 能 产 生 显 著 影 响 ，如 图 3

所示 . 图 3（a）和 3（c）中分别展示了压电纤维片与基

础梁结构的厚度和模量比对于压电曲梁力位移特性

的影响，从中可以看出改变这 2 个参数产生的影响

基 本 相 同，随 着 P、S 的 增 大 都 会 使 整 体 刚 度 增 大；

图 3（b）中展示了基础梁跨高与厚度的比值的影响，

无论 Q 如何变化，力位移曲线都会通过定点

和 .
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(b) Q 参数的影响
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图 3    不同参数对压电曲梁力位移曲线的影响

Fig. 3     Influence of different parameters on force displacement curve of piezoelectric curved beam
 
 

2.3     利用负电容调节压电曲梁准零刚度特性

通 过 图 3（ a）和 3（ c） ，能 够 发 现 改 变 压 电 纤 维

片 的 厚 度 和 模 量 能 够 使 压 电 曲 梁 刚 度 在 正 负 之 间

变化 . 模型确立之后，其厚度在不拆卸重组的情况

下 很 难 发 生 改 变，但 通 过 改 变 外 接 负 电 容 电 路，可

以轻松实现对模量的调节，从而实现对结构刚度的

调控.

λ = −Cn

/
Cs
p

Eeff = Esu
p

/
Eoc
p

λ λ = 0

λ

−
(
1− k2

31

)
λ = −1

式（5）中描述了外接负电容电路对压电纤维片

模量的影响，定义负电容比为 . 图 4 所示

结 果 为 压 电 材 料 归 一 化 后 的 等 效 模 量

与负电容比 之间的关系 . 当 时，其等效模量趋

于 开 路 状 态 下 的 模 量 ； 当 从 较 大 的 负 值 趋 于

时，其等效模量发生从正无穷到负无穷的

跳变；当 时，等效模量为 0；当负电容比趋于负

无穷时，其等效模量趋于短路状态下的模量.

 
 

4
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2

1

0

−1

−2
−2.0 −1.5 −1.0 −0.5 0

E
e
ff

λ

图 4    压电材料等效模量与负电容比之间的关系

Fig. 4    Relationship  between  equivalent  modulus  of  piezoelectric  materials

and negative capacitance ratio
 

先根据工况在不接通电路下设计出准零刚度隔

振器，当负载发生变化时，将变化后的负载带入到力

位移公式中，可以得到压电材料的模量，再根据式（5）
就能够计算出所需的负电容值和负电容比的大小 .

K <

15 N/mm λ = −0.7

λ = −0.7

λ = −1.5

图 5 展示了通过调节外接电路使同一压电曲梁在不

同负载下都能实现准零刚度特性的结果 . 根据额定

负载 22.26 kg 设计出隔振器的参数，其中基础梁和压

电 纤 维 片 的 几 何 和 材 料 参 数 如 表 1 所 示 . 定 义

时为准零刚度区间，当 时，其最小刚

度刚好满足准零刚度条件 . 当负载变化为 24.102 kg
时，求 得 负 电 容 比 为 能 得 到 准 零 刚 度 特 性；

当负载变化为 20.795 kg 时，改变负电容比为

即 可 得 到 准 零 刚 度 特 性，其 准 零 刚 度 位 移 区 域 为
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图 5    不同负电容调控下的力位移曲线和刚度位移曲线

Fig. 5    Theoretical  results  of  force-displacement  and  stiffness-displacement

curves under different negative capacitance
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1.6 ～ 2.6 mm. 总体而言，通过调节负电容值，压电曲

梁可以在不同负载下产生准零刚度特性，而无需手

动更换部件，具有很大的应用前景.
 
 

表 1    压电曲梁的几何尺寸和材料参数

Tab. 1    Parameters of piezoelectric curved beam

基础梁 压电纤维片

Eb = 70 GPa Esc
p = 32.58 GPa

t = 1.7 mm tp = 0.3 mm

h = 2.1 mm ε33 = 2 344.4ε0

l = 100 mm ε0 = 8.85×10−12 F/m

b = 14 mm d31 = −267×10−12 C/N

 

l/3

Q = VCn

此外，在商业有限元软件 COMSOL Multiphysics

5.4 中 建 立 如 图 6 所 示 的 有 限 元 分 析 模 型 . 在 构 造

隔振器时，曲梁两侧的外壁至少为 以满足固支条

件. 选用固体力学和静电模块求解计算，对理论模型

进行验证. 对于电学边界条件，设置接通电路压电纤

维片表面上一点的电荷量为 ，并选用稳态求

解器进行求解 . 如图 7 所示，理论和有限元仿真结果

有很好的一致性，最大误差不超过 5%，验证了理论

模型的准确性，在大位移区域刚度出现了较大的偏

差，这主要是由于在理论模型中忽略了高阶模态的

贡献.

 
 

图 6    有限元仿真模型

Fig. 6    Finite element simulation model
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λ图 7    分别为−0.7 和−1.5 时, 力、刚度与位移之间的关系理论与有限元

仿真结果对比

λ = −0.7 λ =

Fig. 7    Theoretical and finite element simulation comparison of the relation-

ship between force, stiffness, and displacement at  and 

−1.5
  

3     隔振器动力学特性分析
 

3.1     动力学建模与分析

zt z0

z = zt− z0

图 8 给出了力电耦合曲梁准零刚度隔振器的动

力学模型 . 隔振器可以看作是一个单自由度隔振系

统，激励幅值小于 0.04 h 时，工作区域附近的刚度基

本不变，非线性可以暂时忽略 [19]. 在小振幅谐波激励

下，其动力学模型如图 8 所示，组成有线性弹簧 k、载

荷 M、阻尼 c. 当载荷固定在平台上时，平台会向下

移动到静力平衡点. 当基座受到振动激励时，质量会

围绕平衡点上下振动 . 质量块和底座的绝对位移分

别用 和 表示，质量块和底座的相对位移可以表示

为 . 利用传递率来评估该结构的隔振性能，

其表达式为

T = 20log
zt
z0

（16）

 
 

M

z0

ck

zt

图 8    单自由度动力学模型示意图

Fig. 8    Schematic diagram of a single degree of freedom dynamic model
 

图 9 为在不同负载和负电容比下的传递率曲线 .
如 2.2 节中所述，通过调节负电容比可以实现对隔振
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λ = −0.7

λ = −1.5

器力位移曲线的调节，从而实现不同负载下的准零

刚度特性，这一特性使得隔振器能够适应负载的变

化 . 当设定负载为 24.102 kg 时，将负电容值设置为

，隔振器的起始隔振频率为 5.1 Hz；当负载变

化为 20.795 kg 时，如果不进行负电容调节，隔振器的

起始隔振频率变为 15.9 Hz，低频隔振效果明显变差；

如果当负载变为 20.795 kg 的同时，将负电容值设置

为 ，隔振器的起始隔振频率变为 2 Hz，这会

大大改善由负载变化带来的影响. 总体而言，计算结

果 表 明，当 质 量 在 20.795 ～  24.102 kg 之 间 变 化 时，

通过调节负电容值均可使力电耦合曲梁准零刚度隔

振器具有较好的低频隔振效果.
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图 9    力电耦合准零曲梁刚度隔振器在外接不同负电容比电路时的传递

率曲线

Fig. 9    Transmission  of  piezoelectric  quasi-zero  stiffness  vibration  isolator

when connected  to  external  circuits  with  different  negative  capacit-

ance ratios
  

3.2     有限元验证

P = 0.1 mm

ZT

利用图 6 所示的力电耦合曲梁准零刚度隔振器

有限元分析模型，选用的材料属性如表 1 所示，并对

结构进行了动力学仿真，进而验证理论分析结果 . 使

用商业有限元软件 COMSOL 进行求解计算，在仿真

中选择预应力、频域模块进行求解. 仿真步骤分为以

下两步：①先给定底部为固定约束，通过上面的重

物将力电耦合曲梁压缩到工作区间；②将底部的固

定约束改为幅值 的位移激励，并进行了求

解，以计算位移传递率. 设置与理论计算相同的频率

范围 0 ～  20 Hz. 取顶部质量块位移幅值 ，计算模

型振动传递率表达式为

T = 20log
ZT

P
（17）

通过理论模型和有限元仿真分别对隔振器工作

区域的隔振效果进行了求解，采用了无阻尼情况进

λ = −0.7 λ = −1.5

行计算，结果如图 10 所示 . 将有限元仿真与理论计

算 进 行 比 较，可 以 发 现：当 和 时，有

限元仿真结果与理论预测值基本一致，起始隔振频

率 最 大 误 差 为 0.7 Hz，能 够 分 别 实 现 频 率 在 2.5 Hz
和 5.8 Hz 以上振动的有效隔离.
  

100

50

0

−50

−100

−150
0 5 10 15 20

传
递
率

/d
B

频率/Hz
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图 10    外接不同负电容电路时隔振器传递率理论模型与有限元仿真对比

Fig. 10    Theory and finite element simulation comparison of transmission of

vibration isolator  when  connected  different  external  negative  capa-

citor circuits
  

4     结　论

①建立了压电曲梁的力−位移解析模型 . 通过

模态叠加法和最小总势能原理推导了压电曲梁的非

线性力位移关系理论模型，并通过与有限元结果对

比验证了理论模型的准确性.
②负电容能够调节压电曲梁的刚度 . 基于上述

理论模型，分析了负电容对曲梁刚度的影响，结果表

明，通过改变外接负电容值调节压电材料的模量，压

电曲梁能够在不同负载下实现准零刚度特性.
③负电容调节能使隔振器适应不同负载 . 负载

在 20.795 ～  24.102 kg 范围内变化时，仅通过调节负

电容值，可使力电耦合曲梁准零刚度隔振器适应负

载的变化，在不同负载下都能具有较好的低频隔振

性能.
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附录 A. 考虑 1st 和  5th 模态计算力位移

曲线

d = l/2

由 于 曲 梁 两 端 约 束 对 称 ，载 荷 位 于 曲 梁 对 称

中 心，所 以 只 需 要 考 虑 对 称 阶 模 态，即 i=1, 3, 5, ···.
其中，第 3 阶模态振型在 处是零点，所以，考虑

第 1 阶 和 第 5 阶 模 态 ，曲 梁 变 形 后 的 形 状 可 以 表

示为

w (x) = A1

[
1− cos

(
2π x

l

)]
+A5

[
1− cos

(
6π x

l

)]
（A.1）

压电曲梁的弯曲能可以表示为

ub = 2
{Db

2

w 0.23l

0

(
w′′−w′′1 −w′′5

)2
dx+

Deff

2

w 0.49l

0.23l
(w̄′′−

w′′1 −w′′5
)2 dx+

Db

2

w 0.5l

0.49l

(
w̄′′−w′′1 −w′′5

)2 dx
}
=

Db

l3

(−h
2
+A1

)2

C11+A2
5C12−

(
−h

2
+A1

)
A5C13

+
Deff

l3

(−h
2
+A1

)2

C21+A2
5C22−

(
−h

2
+A1

)
A5C23

+
Db

l3

(−h
2
+A1

)2

C31+A2
5C32−

(
−h

2
+A1

)
A5C33


式中：

C11 =

0.23w
0

(
W
′′−W ′′

1

)2
dX = 1.998 4π4,

C12 =

0.23w
0

(W5
′′)2dX = 160.806 5π4,

C13 =

0.23w
0

2W5
′′
(
W
′′−W ′′

1

)
dX = 0.089 5π4,

C21 =

0.49w
0.23

(
W
′′−W ′′

1

)2
dX = 1.841 9π4,

C22 =

0.49w
0.23

(W5
′′)2dX = 150.385 9π4,

C23 =

0.49w
0.23

2W5
′′
(
W
′′−W ′′

1

)
dX = − 2.950 6π4,

C31 =

0.5w
0.49

(
W
′′−W ′′

1

)2
dX = 0.159 8π4,

C32 =

0.5w
0.49

(W5
′′)2dX = 12.807 6π4,

C33 =

0.5w
0.49

2W5
′′
(
W
′′−W ′′

1

)
dX = 2.861 1π4,

W =
w
l
,W1 =

w1

l
,W5 =

w5

l
,X =

x
l

压电曲梁的压缩能可以表示为

uc = 4
Esu
p hpb

2(0.26l)
∆s2p+

Ebtb
2l
∆s2b （A.3）

∆sp ∆sb和 分 别 为 压 电 纤 维 片 和 曲 梁 的 变 形 量，

可以表示为

∆sp = sp− s1 =
1
2

0.48lw
0.23l

[
(w1

′+w5
′)2− (

w′
)2
]
dx =

1
2l

[(
−h2

4
+A2

1

)
D11+A2

5D12+A1A5D13

] （A.4）

∆sb = sb− s2 =
1
2

lw
0

[
(w1

′+w5
′)2− (

w′
)2
]
dx =

1
2l

[(
−h2

4
+A2

1

)
D21+A2

5D22+A1A5D23

] （A.5）

式中： 

D11 =

0.49w
0.23

(W1
′)2dX = 0.579 5π2,

D12 =

0.49w
0.23

(W5
′)2dX = 5.182 6π2,

D13 =

0.49w
0.23

2W1
′W5

′dX = −0.468 4π2,

D21 =

1w
0

(W1
′)2dX = 2π2,

D22 =

1w
0

(W5
′)2dX = 18π2,

D23 =

1w
0

2W1
′W5

′dX = 0,

W1 =
w1

l
,W5 =

w5

l
,X =

x
l

将式（A.4）和（A.5）带入到式（A.3），压缩能可以

表示为

uc =
4Esu

p hpb

2(0.26l3)

[(
A2

1−
h2

4

)
D11+A2

5D12+A1A5D13

]2

+

Ebtb
8l3

[(
A2

1−
h2

4

)
D21+A2

5D22+A1A5D23

]2

（A.6）

中点的位移为

d
(

l
2

)
= w̄

(
l
2

)
−w

(
l
2

)
（A.7）

力做功产生的势能为

uf = − f d
(

l
2

)
= − f (h−2A1−2A5) （A.8）

系统的总能量则可表示为

utot = ub+us+uf （A.9）

根据最小势能原理：
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
∂(utot)
∂A1

= 0

∂(utot)
∂A5

= 0
（A.10）

通过式（A. 7）和（A. 10），给定一个 d 就能够求出

对应的 f. 如图 A1 为只考虑 1 阶与考虑 1、5 阶模态

的对比结果，从中可以看出，考虑高阶模态对于力−
位移曲线和刚度−位移曲线的前半段并没有太大影

响，只会在位移超过 3 mm 之后产生一些影响，但是

这些影响并不明显.
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0 1 2 3 4

位移/mm

(a) 力−位移曲线结果对比

力
/N

λ=−0.7, 只考虑第 1 阶模态
λ=−0.7, 只考虑第 1 阶和第 5 阶模态

400

300
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100

0 1 2 3 4

位移/mm

(b) 刚度−位移曲线结果对比

刚
度

/(
N

·m
m
−1

)

λ=−0.7, 只考虑第 1 阶模态
λ=−0.7, 只考虑第 1 阶和第 5 阶模态

附图 A1    力−位移和刚度−位移理论分析结果

Fig. A1    Theoretical results of the force-displacement curve and the stiffness-displacement curve of the isolator
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