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Design and Analysis of Piezoelectric Quasi-Zero-Stiffness Vibration
Isolators for Different Loads
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Abstract: To address the challenge of limited adaptability to varying loads in existing quasi-zero-stiffness isolat-
ors, this study designed a load-adjustable piezoelectric quasi-zero-stiffness isolator. This isolator primarily
comprised a piezoelectric patch with an externally connected negative capacitance shunt circuit and a cosine-
shaped curved beam. The nonlinear stiffness of the curved beam could be adjusted, by modifying the negative
capacitance value, allowing for control over the isolator’s load-bearing capacity. Initially, by adopting modal
superposition and minimum total potential energy principle, the force-displacement relationship of the piezoe-
lectric curved beam was derived. The derived relationship accuracy was validated through comparison with
finite element results. Subsequently, the piezoelectric curved beam was coupled with a U-shaped stiffer wall to
form the isolator. Both the simplified analytical model and the comprehensive finite element model of the isolat-
or were established to investigate its isolation characteristics under various loads. The results indicate that the
regulation of the modulus of piezoelectric materials through negative capacitance circuits can generate the quasi-
zero-stiffness characteristics under different loads, achieving excellent low-frequency vibration isolation per-
formance.
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Fig. 1 Model of piezoelectric quasi-zero stiffness vibration isolator
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Fig. 3 Influence of different parameters on force displacement curve of piezoelectric curved beam
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