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Abstract
Damped acoustic systems have a limited quality factor due to intrinsic loss. By introducing gain elements, a method to enhance
the quality factor of damped systems is proposed based on the concept of bound states in the continuum (BICs). The acoustic
model under study is a two-port waveguide system installed with two side Helmholtz resonators connected by a coupling
tube. Based on the temporal coupled-mode theory, a Hamiltonian matrix with both intrinsic and radiation losses is used to
characterize the resonance behavior of the coupled resonators. To achieve a high quality factor, acoustic gain is introduced
to compensate the intrinsic loss, leading the Hamiltonian parameters toward a quasi-BIC condition. Numerical simulation
demonstrates a gain-assisted and quasi-BIC-supported extremely high quality factor in damped acoustic systems. The concept
is further utilized to design a sensor model for particle size detection. The enhanced sensing performance due to high quality
factors is numerically demonstrated. The findings suggest potential applications in acoustic sensing and detection devices.
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1 Introduction

The quality factor is an important parameter describing the
resonance behavior of oscillator systems [1]. The resonance
with a high quality factor is highly demanded in acoustic
sensing [2–4], filtering [5, 6], and detection devices [7, 8].
For a realistic system, the quality factor Q is affected by
intrinsic energy damping and radiation loss. While inher-
ent damping is usually unavoidable, radiation loss, which
characterizes energy leakage from the resonator to the exte-
rior environment, can be minimized through proper system
designs. Recent efforts have been devoted to the suppression
of radiation loss based on the concept of bound states in the
continuum (BICs) in order to achieve high quality factors
[9–12]. BICs are trapped modes residing in the continuum
spectrum, and can provide zero radiation to the outside envi-
ronment. There are different working mechanisms for form-
ing acoustic localized modes, including symmetry-protected
BICs [13–15], accidental BICs [16–18], Fabry-Perot BICs
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[19–21], and Friedrich-Wintgen BICs [22–26]. Quasi-BICs,
which aremodified pure BICswith slight radiation, can inter-
act with the external environment and achieve an extremely
high quality factor in systems with weak intrinsic damping.

In acoustic resonators, viscous damping can significantly
weaken the resonance behavior, especially in the presence of
small apertures. Even if radiation loss is diminished, inherent
damping can still constrain the quality factor of acoustic res-
onance. To overcome this limitation, the gain element can be
introduced into a damped system to compensate for energy
dissipation. However, the designmethods and high-Q perfor-
mance of gain-assisted BIC systems remain underexplored.
It is worth noting that BIC systems exhibit non-Hermitian
characteristics. Over the past decade, non-Hermitian acous-
tics has witnessed a rapid development [27–29], leveraging
the unique properties of balanced gain and loss. The rele-
vant study can provide guidance for the design of acoustic
gain elements. For example, acoustic gain can be realized in
a loudspeaker system shunted with negative resistance cir-
cuits to construct a non-Hermitian exceptional point [30].
The loudspeaker structure can be equivalently represented
by an impedance boundary condition, where acoustic gain is
created by negative resistance effect.
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Fig. 1 a Schematic illustration of acoustic coupled-resonator system.
A straight hollow waveguide of side length L is connected to two
Helmholtz resonators with the diameterD1,2 and height L1,2. The cylin-
drical neck of the resonator has the diameter di and height li. Two
resonators are connected by an annular tube of diameter dc and dis-
tance Rc. Acoustic impedance boundary Z1,2 used to produce energy
gain occupies a circular area of diameter D1,2/2. b The coupled-mode
model of acoustic system in (a)

In this work, the enhancement of the quality factor in a
two-port waveguide system with coupled resonators is stud-
ied. In the presence of air viscous damping, acoustic gain
is introduced into the system in terms of the impedance
boundary with negative resistances to compensate for energy
dissipation. Based on the temporal coupled-mode theory,
the gain–loss balance and quasi-BICs are simultaneously
attained in damped acoustic systems, leading to high-Q
performance. A sensor model for particle size detection is
designed to demonstrate the advantages of the proposed high-
Q acoustic system.

2 Model and Theory

The acoustic model under study consists of a straight rectan-
gular waveguide coupled to a pair of Helmholtz resonators,
which are connected by an annular tube, as shown in Fig. 1.
Let themodal amplitudes of the two resonators be denoted by
a1 and a2. In the waveguide, s+1 and s+2 represent the complex
amplitudes of input waves incident from the left and right

sides, respectively, while s−
1 and s−

2 stand for those of outgo-
ing waves. Based on the temporal coupled-mode theory [31],
the dynamic equations for this two-port coupled-resonator
system are governed by

{
−i dadt � Ha + KTs+

s− � Cs+ + Da
(1)

with

H �
[

ω1 + iδ1 + iγ1 κ + i
√

γ1γ2

κ + i
√

γ1γ2 ω2 + iδ2 + iγ2

]
(2)

C �
[
0 1
1 0

]
, K �

[√
γ1

√
γ2√

γ1
√

γ2

]
, D � iK (3)

where a � [a1, a2]T, s+ � [
s+1 , s

+
2

]T, and s− � [
s−
1 , s

−
2

]T
.

H is theHamiltonianmatrix of the coupled resonators, where
ω1, 2 and δ1, 2 denote respectively the resonance frequency
and damping factor of the resonators, γ1, 2 is the radiation
loss, andκ is the couplingmagnitudebetween two resonators.

We begin with the analysis of the system without air vis-
cous damping, which means δ1, 2 � 0. The eigenvalues of
the Hamiltonian H are given by [32]

ω± � ωs + iγs ±
√

(ωc + iγc)2 +
(
κ + i

√
γ1γ2

)2 (4)

whereωs � (ω1+ω2)/2, γs � (γ1+γ2)/2,ωc � (ω1−ω2)/2,
andγc � (γ1−γ2)/2.The bound statewith zero radiation loss
corresponds to a purely real eigenvalue, which is achieved
when the following condition is satisfied [32]

κ(γ1 − γ2) � √
γ1γ2(ω1 − ω2) (5)

In this case, the eigenvalues reduce to

{
ω+ � ωs +

κγs√
γ1γ2

+ i(γ1 + γ2)

ω− � ωs − κγs√
γ1γ2

(6)

It is seen that the resonance of frequency ω− is free from
radiation loss, while the other resonance atω+ becomesmore
lossy. The quality factor of the low-loss mode ω− is defined
as QCMT � Re(ω−)/(2Im(ω−)), and it can reach infinity in
theory when the BIC condition (5) is satisfied.

Based on the coupledmode Eq. (1), the transmission coef-
ficient of the model system can be calculated by T � s−

2 /s+1 ,
which results in

T � (ω − ω1)(ω − ω2) − κ2

det(ωI − H0)
(7)

where H0 denotes the Hamiltonian in the lossless case
(δ1, 2 � 0) of Eq. (2), and I is the identity matrix. Five
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Fig. 2 Simulation results of the energy transmission spectrum of acous-
tic waveguide system connected to a a single resonator and b coupled
resonators

Hamiltonian parameters (ω1,2, γ 1,2, and κ) can be identified
by numerically calculating transmission spectra and fitting
them with the results of Eq. (7), as detailed in the Supple-
mentary Material [33]. According to this fitting method and
BIC condition (5), the structural parameters of the coupled-
resonator system with high-Q performance can be designed.

As an example, consider the geometric parameters: L �
30 mm, d1 � 6 mm,D1 � 30 mm, d2 � 5 mm,D2 � 22 mm,
l1(2) � 8mm, L1(2) � 40mm, dc � 5.1mm, andRc � 45mm.
Thedensityρ0 �1.21 kg/m3 and soundvelocity c0 �343m/s
are chosen for air. Figure 2a, b show the energy transmission
spectra of the waveguide connected to a single resonator and
to coupled resonators, respectively. The resonance results in a
transmission drop, reaching aminimum at frequencyωd. The
radiation loss of this resonant state can be measured by the
full width at half maximum (FWHM), with the quality factor
defined asQTM �ωd/FWHM. It can be seen fromFig. 2b that
the coupled resonance provides a means to redistribute the
radiation loss in such a way that one resonance is modulated
with a higher Q at the cost of increased loss in another. This
is the key idea of the BIC to achieve high-Q performance.

To further disclose the underlying mechanism, the acous-
tic transmission of the coupled-resonator systemwith various
D2 is calculated. The dip transmission frequency ωd and
FWHM are retrieved, as shown in Fig. 3a, b, respectively. To
verify the relationship between transmission behavior and the
coupled-modemodel, theHamiltonian parametersω1,2, γ 1,2,
and κ are calculated via a fitting method and used to compute

Fig. 3 a Real parts of ω± and the dip transmission frequency ωd as
well as b imaginary parts of ω± and the FWHM of transmission spec-
trum against the variation of D2/D1; c the quality factor of the low-loss
resonance mode ω-

ω± based on Eq. (4), as shown in Fig. 3a, b. The numerical
simulation results align closely with Eq. (4), showing the
approximate relationships of ωd ≈ Re(ω±) and FWHM ≈
2Im(ω±). This also leads to the results of QTM ≈ QCMT, as
verified in Fig. 3c.

According to Fig. 3, a quasi-BIC can be achieved atD2 �
25.6 mm with the quality factor approaching 106. The cor-
responding scattering pressure field of the system is shown
in the inset of Fig. 3c. It is seen that the interference inter-
action of the two resonators results in the field distribution
with a minor scattering from resonators to the waveguide,
disclosing the nature of Friedrich-Wintgen BICs [22–26].

3 Gain-Assisted Systemwith High-Q
Performance

Figure 4(a) shows the transmission spectrum of the loss-
less quasi-BIC system with D2 � 25.6 mm, where a sharp
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Fig. 4 a Simulation results of energy transmission spectra of a lossless
quasi-BIC system, the same system but with intrinsic viscous damping,
and that being added with the energy gain to compensate for intrinsic
loss; b the net energy input

∑
gain and dissipation

∑
loss in gain-assisted

systems, where the inset shows the energy distribution in sub-systems

resonance can be observed near the frequency of 591 Hz.
However, this high-Q performance of acoustic quasi-BIC
resonance disappears when there is air viscous damping in
the system. Notice that the numerical simulation of damped
systems is based on the thermal-viscous damping module of
COMSOL Multiphysics [33]. In this section, the method to
enhance the quality factor of damped systems is discussed
by introducing acoustic gain effect.

In our model, acoustic gain is introduced by setting acous-
tic impedance conditions Z1,2 � ρ0c0(R1,2 + iX1,2) at the
bottom edge of the resonator chamber, which occupies a cir-
cular area of diameters D1,2/2, as sketched in Fig. 1. Energy
can be pumped into the system by implementing negative
acoustic resistance (R1,2 < 0), which is practically realizable
through techniques of loudspeaker structures with shunting
circuits [30, 34] or active feedback control systems [35, 36].

For damped systems with δ1,2 �� 0, the transmission coef-
ficient can be calculated by the coupled mode Eq. (1), as
given by

T � (ω − ω1)(ω − ω2) − κ2 − �

det(ωI − H)
(8)

where H is given by Eq. (2), and

� � iδ1(ω − ω2) + iδ2(ω − ω1) + δ1δ2 (9)

For systems with air viscous damping and impedance
boundary Z1,2, seven Hamiltonian parameters (ω1,2, γ 1,2,
δ1,2, and κ) are identified byfitting simulation results of trans-
mission spectra with the results of Eq. (8) [33]. To achieve a
high quality factor for damped systems, a necessary condi-
tion is to require δ1,2 � 0,which is set to achieve the gain–loss
balance such that the dissipated energy is exactly compen-
sated by gain. As a result of the vanishing of the overall
damping, the system operates in a lossless manner, and then
the BIC condition (5) can be again used to achieve high-Q
performance.

As an example, the damped system in Fig. 4a is addedwith
impedance boundaries X1 � − 5 and X2 � − 2.5. According
to the fitting method, acoustic resistances are determined as
R1 � − 1.178 and R2 � − 0.359 such that the condition of
δ1,2 � 0 is fulfilled. The transmission spectrum of this gain-
assisted system is plotted in Fig. 4a. The resonance behavior
with a sharp transmission drop is recovered, showcasing a
spectral profile similar to that of a lossless quasi-BIC system.
To gain an insight into the gain–loss balance, we calculate
the net power (

∑
loss) of energy dissipation due to viscous

damping by two resonators and the coupling tube. In addi-
tion, the net power (

∑
gain) of energy input by gain in terms of

impedance conditions Z1 and Z2 (at boundaries denoted by
S) can be calculated byW � 0.5

∫
SRe(p v∗

n)ds, where p and vn
refer to the pressure and normal velocity, respectively, and the
symbol * denotes the complex conjugate. Figure 4b shows the
net energy loss (

∑
loss) and gain (

∑
gain) normalized to acous-

tic power of incident waves, W0 � p20L
2/(2ρ0c0), where p0

is the wave amplitude, with the inset displaying the energy
contributions by sub-systems. It is seen that the net energy
loss and gain are exactly balanced near the resonance fre-
quency of 525 Hz, as guaranteed by the condition of δ1,2 �
0.

Acoustic reactance X1,2 impacts the system by affecting
Hamiltonian parameters ω1,2. For any sets of X1 and X2, R1

andR2 can be uniquely determined according to the gain–loss
balance condition δ1,2 � 0. Therefore, the BIC condition in
gain-assisted systems can be fulfilled by tuning X1,2. Based
on the model of Fig. 4, we vary X2 while keep other sys-
tem parameters unchanged. Results of ωd, FWHM, and ω±
against variousX2 are plotted in Fig. 5a, b in a similar style to
Fig. 3a, b. Notice that the condition of δ1,2 � 0 has been guar-
anteed for any case of X2 by choosing proper R1,2. Results
confirm the relationship of ωd ≈ Re(ω±) and FWHM ≈
2Im(ω±). The resonancemode atω- can bemodulated with a
very low radiation loss at some specific X2. Figure 5c shows
the quality factors of thismode calculated byQTM andQCMT,
which are in good agreement. A quasi-BIC can be found at
X2 � − 5 with the quality factor up to 106, and the corre-
sponding acoustic resistances are R1 � − 1.126 and R2 � −
1.4.
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Fig. 5 a–c Results similar to Figs. 3a-c, but for gain-assisted systems

Fig. 6 aThe quality factorQTM of gain-assisted resonance systemswith
various X1 and X2, and b the corresponding resonance frequencies

Modulation in the parameter space (X1, X2) would offer
more possibilities to fulfill the high-Q condition (5). As an
illustration, the quality factorQTM of the resonance is shown
in Fig. 6a by varying both X1 and X2 for the model sys-
tem of Fig. 4. Notice that the condition of δ1,2 � 0 has been
satisfied for any sets of X1 and X2 with proper choice of

R1,2. Results show that an extremely high Q can be achieved
in systems with different sets of X1 and X2. The resonance
with a high quality factorQ > 106 can appear at different fre-
quencies occupying a finite bandwidth ranging from 493 to
555 Hz, as observed in Fig. 6b. This clearly demonstrates the
design flexibility of X1 and X2 in manipulating the high-Q
performance of acoustic quasi-BIC resonance and its corre-
sponding frequency.

4 Sensor Model for Particle Size Detection

Based on the quasi-BIC concept in gain-assisted systems,
we design a sensor model for particle size detection, and
illustrate the superior sensing performance supported by the
high-Q resonance. The schematic of the sensor model is
shown in Fig. 7a. Acoustic energy transfer and interaction
are significant in the waveguide region near the inlet ports
of two Helmholtz resonators. In this region, the presence of
scattering particles is expected to cause an obvious change
in acoustic resonant response of incident waves, which can
be used for sensing the presence of particles and detecting
their volume sizes. To verify the sensing performance, an
acoustically-rigid particle of a cubic block of length a is
placed in the nearby region of two inlet ports. The parti-
cle size is characterized by its volume fraction with respect
to the waveguide geometry, as defined by α � (a/L)3. The
system parameters used in the sensor model are the same as
those in Fig. 5a, b.X2 � − 4.5 is chosen to acquire the high-Q
performance supported by a quasi-BIC, and a low-Q system
is also introduced for comparison by setting X2 � − 2.5.

Figure 7b, c show the simulation results of transmission
spectra for particles of different sizes (α � 0, 3%, 6%, and
9%) in the high-Q (X2 � − 4.5) and low-Q (X2 � − 2.5)
systems, respectively. It is clearly seen that the resonant fre-
quency at which acoustic transmission significantly drops
is shifted with the variation of the particle size. For further
illustration, the shift of the resonant frequency for various
particle sizes with respect to the empty case (α � 0) is cal-
culated, as shown in Fig. 7d. A nearly linear correlation can
be observed, confirming that the model system can be used
as a particle size sensor. The Q factors of resonances associ-
ated with different particle sizes are shown in Fig. 7e. They
approach approximately 102 and 104 for the high-Q and low-
Q systems, respectively. As a superior property, the sensor
model is seen to possess a weak dependence of Q values on
the size variation of particles under detection. Namely, a high
quality factor, once designed in the absence of particles, can
be maintained irrespective of particle size changes.

The sensor performance canbe evaluated in termsof sensi-
tivity and figure of merit (FoM). Here, sensitivity is defined
as the resonant frequency shifting versus the particle size
change, i.e., S � �f /�α. According to Fig. 7d, the shift of
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Fig. 7 aSchematic of the quasi-BIC-based sensor for particle size detec-
tion; simulation results of transmission spectra for particles of different
sizes (α � 0, 3%, 6%, and 9%) in the b high-Q (X2 � − 4.5) and c low-
Q (X2 � − 2.5) systems; d the resonant frequency shifting with respect

to the empty case (α � 0), e the Q-factor, and f the FoM in the case of
various particle sizes

resonant frequency againstα coincides for high-Q and low-Q
systems, which means the same sensitivity of the two sys-
tems. However, the FoM is related to both sensitivity and the
Q factor, and is defined by FoM� S/FWHM. The FoM in the
case of various particle sizes is shown in Fig. 7f. As a result
of the quasi-BIC resonance, it is seen that the FoM of the
high-Q system is two orders of magnitude greater than that
of the low-Q system. This means that the quasi-BIC-based
sensor with high FoM can more accurately detect the weak
particle size variation.

5 Conclusion

The quality factor is an important parameter in sensing, fil-
tering, and detection devices. In recent years, there has been
increasing interest in achieving high-Q performance of res-
onance systems based on the bound states in the continuum.
For a lossless system, the BIC condition is developed by
pursuing a purely real eigenvalue of the system Hamilto-
nian. In a state close to the BIC, there is a minor radiation
loss, which results in an extremely high quality factor. This

work focuses on damped acoustic systems with intrinsic loss
and presents a BIC-based method to enhance the quality fac-
tor by incorporating gain elements. The model system is a
two-port acoustic waveguide connected to two directly cou-
pled Helmholtz resonators. The dynamic equation for the
coupled-resonator system is established based on the tem-
poral coupled-mode theory, where the system Hamiltonian
involves both intrinsic and radiation losses. To achieve high-
Q performance in damped systems, acoustic gain is designed
to exactly balance the intrinsic loss such that the damping
factor of the system Hamiltonian vanishes. Meanwhile, the
system parameters approach a quasi-BIC condition such that
the radiation loss can be greatly suppressed. As a result of the
reduction of both intrinsic and radiation losses, an extremely
high quality factor can be achieved in gain-assisted acoustic
resonance systems, as demonstrated by numerical simula-
tions. It is worth noting that acoustic impedance boundary
that produces the gain effect can offer more possibilities to
fulfill the high-Q condition at different frequencies. Finally,
a sensor model for particle size detection is proposed based
on the gain-assisted system with quasi-BICs. The good sens-
ing performance with high FoM is illustrated to demonstrate
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the advantages of the studied high-Q acoustic system. The
proposed method can be used to achieve high quality factors
in acoustic systems with nontrivial intrinsic damping and
improve the sensing performance of acoustic sensors and
detection devices.

Supplementary Information The online version contains supplemen-
tarymaterial available at https://doi.org/10.1007/s10338-024-00530-3.
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