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Abstract

Damped acoustic systems have a limited quality factor due to intrinsic loss. By introducing gain elements, a method to enhance
the quality factor of damped systems is proposed based on the concept of bound states in the continuum (BICs). The acoustic
model under study is a two-port waveguide system installed with two side Helmholtz resonators connected by a coupling
tube. Based on the temporal coupled-mode theory, a Hamiltonian matrix with both intrinsic and radiation losses is used to
characterize the resonance behavior of the coupled resonators. To achieve a high quality factor, acoustic gain is introduced
to compensate the intrinsic loss, leading the Hamiltonian parameters toward a quasi-BIC condition. Numerical simulation
demonstrates a gain-assisted and quasi-BIC-supported extremely high quality factor in damped acoustic systems. The concept
is further utilized to design a sensor model for particle size detection. The enhanced sensing performance due to high quality
factors is numerically demonstrated. The findings suggest potential applications in acoustic sensing and detection devices.
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1 Introduction

The quality factor is an important parameter describing the
resonance behavior of oscillator systems [1]. The resonance
with a high quality factor is highly demanded in acoustic
sensing [2—4], filtering [5, 6], and detection devices [7, 8].
For a realistic system, the quality factor Q is affected by
intrinsic energy damping and radiation loss. While inher-
ent damping is usually unavoidable, radiation loss, which
characterizes energy leakage from the resonator to the exte-
rior environment, can be minimized through proper system
designs. Recent efforts have been devoted to the suppression
of radiation loss based on the concept of bound states in the
continuum (BICs) in order to achieve high quality factors
[9-12]. BICs are trapped modes residing in the continuum
spectrum, and can provide zero radiation to the outside envi-
ronment. There are different working mechanisms for form-
ing acoustic localized modes, including symmetry-protected
BICs [13-15], accidental BICs [16—18], Fabry-Perot BICs
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[19-21], and Friedrich-Wintgen BICs [22-26]. Quasi-BICs,
which are modified pure BICs with slight radiation, can inter-
act with the external environment and achieve an extremely
high quality factor in systems with weak intrinsic damping.

In acoustic resonators, viscous damping can significantly
weaken the resonance behavior, especially in the presence of
small apertures. Even if radiation loss is diminished, inherent
damping can still constrain the quality factor of acoustic res-
onance. To overcome this limitation, the gain element can be
introduced into a damped system to compensate for energy
dissipation. However, the design methods and high-Q perfor-
mance of gain-assisted BIC systems remain underexplored.
It is worth noting that BIC systems exhibit non-Hermitian
characteristics. Over the past decade, non-Hermitian acous-
tics has witnessed a rapid development [27-29], leveraging
the unique properties of balanced gain and loss. The rele-
vant study can provide guidance for the design of acoustic
gain elements. For example, acoustic gain can be realized in
a loudspeaker system shunted with negative resistance cir-
cuits to construct a non-Hermitian exceptional point [30].
The loudspeaker structure can be equivalently represented
by an impedance boundary condition, where acoustic gain is
created by negative resistance effect.
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Fig.1 a Schematic illustration of acoustic coupled-resonator system.
A straight hollow waveguide of side length L is connected to two
Helmbholtz resonators with the diameter D > and height L; ». The cylin-
drical neck of the resonator has the diameter d; and height /;. Two
resonators are connected by an annular tube of diameter d. and dis-
tance R.. Acoustic impedance boundary Z; > used to produce energy
gain occupies a circular area of diameter Dj2/2. b The coupled-mode
model of acoustic system in (a)

In this work, the enhancement of the quality factor in a
two-port waveguide system with coupled resonators is stud-
ied. In the presence of air viscous damping, acoustic gain
is introduced into the system in terms of the impedance
boundary with negative resistances to compensate for energy
dissipation. Based on the temporal coupled-mode theory,
the gain—loss balance and quasi-BICs are simultaneously
attained in damped acoustic systems, leading to high-Q
performance. A sensor model for particle size detection is
designed to demonstrate the advantages of the proposed high-
Q acoustic system.

2 Model and Theory

The acoustic model under study consists of a straight rectan-
gular waveguide coupled to a pair of Helmholtz resonators,
which are connected by an annular tube, as shown in Fig. 1.
Let the modal amplitudes of the two resonators be denoted by
ay and a,. In the waveguide, s7 and s3 represent the complex
amplitudes of input waves incident from the left and right
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sides, respectively, while s;” and s, stand for those of outgo-
ing waves. Based on the temporal coupled-mode theory [31],
the dynamic equations for this two-port coupled-resonator
system are governed by
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where a = [a1, a2]T, s = [s], sg]T, and s™ = [sy, sz_]T.
H is the Hamiltonian matrix of the coupled resonators, where
w1,2 and 81,2 denote respectively the resonance frequency
and damping factor of the resonators, 1 7 is the radiation
loss, and k is the coupling magnitude between two resonators.

We begin with the analysis of the system without air vis-
cous damping, which means 8; 2 = 0. The eigenvalues of
the Hamiltonian H are given by [32]

. . . 2
s = o +is £\ (o +i70)? + (€ +iTT5) 4)

where s = (01+w2)/2, ys = (Y1+72)/2, wc = (01 —@2)/2,
and y. = (¥1—¥2)/2. The bound state with zero radiation loss
corresponds to a purely real eigenvalue, which is achieved
when the following condition is satisfied [32]

k(y1 — y2) = /V1v2(o1 — w2) (5)

In this case, the eigenvalues reduce to

— KYs :
{w+—ws+%+l(yl+y2) (6)
w_ = ws —
JY1YV2

It is seen that the resonance of frequency w_ is free from
radiation loss, while the other resonance at w, becomes more
lossy. The quality factor of the low-loss mode w_ is defined
as OQcmt = Re(w-)/(2Im(w-)), and it can reach infinity in
theory when the BIC condition (5) is satisfied.

Based on the coupled mode Eq. (1), the transmission coef-
ficient of the model system can be calculated by T = s, /s7,
which results in

T _ (0 — o1)(@ — ) — k*
B det(wl — Hyo)

(N

where H( denotes the Hamiltonian in the lossless case
(61,2 = 0) of Eq. (2), and I is the identity matrix. Five
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Fig. 2 Simulation results of the energy transmission spectrum of acous-
tic waveguide system connected to a a single resonator and b coupled
resonators

Hamiltonian parameters (w12, 1,2, and «) can be identified
by numerically calculating transmission spectra and fitting
them with the results of Eq. (7), as detailed in the Supple-
mentary Material [33]. According to this fitting method and
BIC condition (5), the structural parameters of the coupled-
resonator system with high-Q performance can be designed.
As an example, consider the geometric parameters: L =
30mm, d; =6 mm, D; =30 mm, d, =5 mm, D, =22 mm,
l12)=8mm, L2y =40 mm, d. =5.1 mm, and R =45 mm.
The density po = 1.21 kg/m? and sound velocity co = 343 m/s
are chosen for air. Figure 2a, b show the energy transmission
spectra of the waveguide connected to a single resonator and
to coupled resonators, respectively. The resonance results in a
transmission drop, reaching a minimum at frequency wq. The
radiation loss of this resonant state can be measured by the
full width at half maximum (FWHM), with the quality factor
defined as Qv = wg/FWHM. It can be seen from Fig. 2b that
the coupled resonance provides a means to redistribute the
radiation loss in such a way that one resonance is modulated
with a higher Q at the cost of increased loss in another. This
is the key idea of the BIC to achieve high-Q performance.
To further disclose the underlying mechanism, the acous-
tic transmission of the coupled-resonator system with various
D, is calculated. The dip transmission frequency wg and
FWHM are retrieved, as shown in Fig. 3a, b, respectively. To
verify the relationship between transmission behavior and the
coupled-mode model, the Hamiltonian parameters w12, ¥ 12,
and k are calculated via a fitting method and used to compute
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Fig.3 a Real parts of w4 and the dip transmission frequency wq as
well as b imaginary parts of w+ and the FWHM of transmission spec-
trum against the variation of D>/D1; ¢ the quality factor of the low-loss
resonance mode -

o+ based on Eq. (4), as shown in Fig. 3a, b. The numerical
simulation results align closely with Eq. (4), showing the
approximate relationships of wg &~ Re(wi) and FWHM =~
2Im(w4). This also leads to the results of OQtm &~ QcMmT, as
verified in Fig. 3c.

According to Fig. 3, a quasi-BIC can be achieved at Dy =
25.6 mm with the quality factor approaching 10°. The cor-
responding scattering pressure field of the system is shown
in the inset of Fig. 3c. It is seen that the interference inter-
action of the two resonators results in the field distribution
with a minor scattering from resonators to the waveguide,
disclosing the nature of Friedrich-Wintgen BICs [22-26].

3 Gain-Assisted System with High-Q
Performance

Figure 4(a) shows the transmission spectrum of the loss-
less quasi-BIC system with D, = 25.6 mm, where a sharp
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Fig. 4 a Simulation results of energy transmission spectra of a lossless
quasi-BIC system, the same system but with intrinsic viscous damping,
and that being added with the energy gain to compensate for intrinsic
loss; b the net energy input ) _g,in and dissipation ) joss in gain-assisted
systems, where the inset shows the energy distribution in sub-systems

resonance can be observed near the frequency of 591 Hz.
However, this high-Q performance of acoustic quasi-BIC
resonance disappears when there is air viscous damping in
the system. Notice that the numerical simulation of damped
systems is based on the thermal-viscous damping module of
COMSOL Multiphysics [33]. In this section, the method to
enhance the quality factor of damped systems is discussed
by introducing acoustic gain effect.

In our model, acoustic gain is introduced by setting acous-
tic impedance conditions Z12 = poco(R12 + iX12) at the
bottom edge of the resonator chamber, which occupies a cir-
cular area of diameters D1 /2, as sketched in Fig. 1. Energy
can be pumped into the system by implementing negative
acoustic resistance (R 2 < 0), which is practically realizable
through techniques of loudspeaker structures with shunting
circuits [30, 34] or active feedback control systems [35, 36].

For damped systems with 81 » # 0, the transmission coef-
ficient can be calculated by the coupled mode Eq. (1), as
given by

_ (@—o)@-w) k- A

T ®)
det(wl — H)

where H is given by Eq. (2), and

A=id1(w—wp)+idr(w—w1)+815 )
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For systems with air viscous damping and impedance
boundary Z|,, seven Hamiltonian parameters (w12, ¥1.2,
81,2, and k) are identified by fitting simulation results of trans-
mission spectra with the results of Eq. (8) [33]. To achieve a
high quality factor for damped systems, a necessary condi-
tion is to require §1 » = 0, which is set to achieve the gain—loss
balance such that the dissipated energy is exactly compen-
sated by gain. As a result of the vanishing of the overall
damping, the system operates in a lossless manner, and then
the BIC condition (5) can be again used to achieve high-Q

performance.
As an example, the damped system in Fig. 4a is added with
impedance boundaries X1 = — 5 and X» = — 2.5. According

to the fitting method, acoustic resistances are determined as
R; = — 1.178 and R, = — 0.359 such that the condition of
812 = 0 is fulfilled. The transmission spectrum of this gain-
assisted system is plotted in Fig. 4a. The resonance behavior
with a sharp transmission drop is recovered, showcasing a
spectral profile similar to that of a lossless quasi-BIC system.
To gain an insight into the gain—loss balance, we calculate
the net power (D joss) Of energy dissipation due to viscous
damping by two resonators and the coupling tube. In addi-
tion, the net power () _gain) of energy input by gain in terms of
impedance conditions Z and Z, (at boundaries denoted by
S) can be calculated by W = 0.5 [ sRe(p v¥)ds, where p and vy
refer to the pressure and normal velocity, respectively, and the
symbol * denotes the complex conjugate. Figure 4b shows the
netenergy loss (3 _1oss) and gain (Zgain) normalized to acous-
tic power of incident waves, Wy = p(z)L2 /(2pocop), where pg
is the wave amplitude, with the inset displaying the energy
contributions by sub-systems. It is seen that the net energy
loss and gain are exactly balanced near the resonance fre-
quency of 525 Hz, as guaranteed by the condition of §;» =
0.

Acoustic reactance X1, impacts the system by affecting
Hamiltonian parameters w1 7. For any sets of X and X2, R;
and R, can be uniquely determined according to the gain—loss
balance condition 61, = 0. Therefore, the BIC condition in
gain-assisted systems can be fulfilled by tuning X ». Based
on the model of Fig. 4, we vary X, while keep other sys-
tem parameters unchanged. Results of wg, FWHM, and w4
against various X» are plotted in Fig. 5a, b in a similar style to
Fig. 3a, b. Notice that the condition of §; » = 0 has been guar-
anteed for any case of X» by choosing proper Rj». Results
confirm the relationship of wg ~ Re(w+) and FWHM =~
2Im(w4 ). The resonance mode at w_ can be modulated with a
very low radiation loss at some specific X;. Figure 5S¢ shows
the quality factors of this mode calculated by Qv and Qcmr,
which are in good agreement. A quasi-BIC can be found at

X, = — 5 with the quality factor up to 10°, and the corre-
sponding acoustic resistances are R = — 1.126 and Ry = —
1.4.
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Fig. 6 a The quality factor Qv of gain-assisted resonance systems with
various X and X, and b the corresponding resonance frequencies

Modulation in the parameter space (X, X2) would offer
more possibilities to fulfill the high-Q condition (5). As an
illustration, the quality factor Oty of the resonance is shown
in Fig. 6a by varying both X; and X, for the model sys-
tem of Fig. 4. Notice that the condition of §; 2 = 0 has been
satisfied for any sets of X; and X, with proper choice of

R1 2. Results show that an extremely high O can be achieved
in systems with different sets of X| and X,. The resonance
with a high quality factor Q > 10° can appear at different fre-
quencies occupying a finite bandwidth ranging from 493 to
555 Hz, as observed in Fig. 6b. This clearly demonstrates the
design flexibility of X; and X, in manipulating the high-Q
performance of acoustic quasi-BIC resonance and its corre-
sponding frequency.

4 Sensor Model for Particle Size Detection

Based on the quasi-BIC concept in gain-assisted systems,
we design a sensor model for particle size detection, and
illustrate the superior sensing performance supported by the
high-Q resonance. The schematic of the sensor model is
shown in Fig. 7a. Acoustic energy transfer and interaction
are significant in the waveguide region near the inlet ports
of two Helmholtz resonators. In this region, the presence of
scattering particles is expected to cause an obvious change
in acoustic resonant response of incident waves, which can
be used for sensing the presence of particles and detecting
their volume sizes. To verify the sensing performance, an
acoustically-rigid particle of a cubic block of length a is
placed in the nearby region of two inlet ports. The parti-
cle size is characterized by its volume fraction with respect
to the waveguide geometry, as defined by o = (a/L)>. The
system parameters used in the sensor model are the same as
those in Fig. 5a, b. X, = — 4.5 is chosen to acquire the high-Q
performance supported by a quasi-BIC, and a low-Q system
is also introduced for comparison by setting X, = — 2.5.

Figure 7b, c show the simulation results of transmission
spectra for particles of different sizes (¢« = 0, 3%, 6%, and
9%) in the high-Q (X2 = — 4.5) and low-Q (X2 = — 2.5)
systems, respectively. It is clearly seen that the resonant fre-
quency at which acoustic transmission significantly drops
is shifted with the variation of the particle size. For further
illustration, the shift of the resonant frequency for various
particle sizes with respect to the empty case (o = 0) is cal-
culated, as shown in Fig. 7d. A nearly linear correlation can
be observed, confirming that the model system can be used
as a particle size sensor. The Q factors of resonances associ-
ated with different particle sizes are shown in Fig. 7e. They
approach approximately 10? and 10* for the high-Q and low-
0 systems, respectively. As a superior property, the sensor
model is seen to possess a weak dependence of Q values on
the size variation of particles under detection. Namely, a high
quality factor, once designed in the absence of particles, can
be maintained irrespective of particle size changes.

The sensor performance can be evaluated in terms of sensi-
tivity and figure of merit (FoM). Here, sensitivity is defined
as the resonant frequency shifting versus the particle size
change, i.e., S = Af/A«a. According to Fig. 7d, the shift of
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Fig. 7 a Schematic of the quasi-BIC-based sensor for particle size detec-
tion; simulation results of transmission spectra for particles of different
sizes (o = 0, 3%, 6%, and 9%) in the b high-Q (X, = — 4.5) and ¢ low-
0 (X2 = — 2.5) systems; d the resonant frequency shifting with respect

resonant frequency against « coincides for high-Q and low-Q
systems, which means the same sensitivity of the two sys-
tems. However, the FoM is related to both sensitivity and the
Q factor, and is defined by FoM = S/FWHM. The FoM in the
case of various particle sizes is shown in Fig. 7f. As a result
of the quasi-BIC resonance, it is seen that the FoM of the
high-Q system is two orders of magnitude greater than that
of the low-Q system. This means that the quasi-BIC-based
sensor with high FoM can more accurately detect the weak
particle size variation.

5 Conclusion

The quality factor is an important parameter in sensing, fil-
tering, and detection devices. In recent years, there has been
increasing interest in achieving high-Q performance of res-
onance systems based on the bound states in the continuum.
For a lossless system, the BIC condition is developed by
pursuing a purely real eigenvalue of the system Hamilto-
nian. In a state close to the BIC, there is a minor radiation
loss, which results in an extremely high quality factor. This
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to the empty case (o« = 0), e the Q-factor, and f the FoM in the case of
various particle sizes

work focuses on damped acoustic systems with intrinsic loss
and presents a BIC-based method to enhance the quality fac-
tor by incorporating gain elements. The model system is a
two-port acoustic waveguide connected to two directly cou-
pled Helmholtz resonators. The dynamic equation for the
coupled-resonator system is established based on the tem-
poral coupled-mode theory, where the system Hamiltonian
involves both intrinsic and radiation losses. To achieve high-
Q performance in damped systems, acoustic gain is designed
to exactly balance the intrinsic loss such that the damping
factor of the system Hamiltonian vanishes. Meanwhile, the
system parameters approach a quasi-BIC condition such that
the radiation loss can be greatly suppressed. As aresult of the
reduction of both intrinsic and radiation losses, an extremely
high quality factor can be achieved in gain-assisted acoustic
resonance systems, as demonstrated by numerical simula-
tions. It is worth noting that acoustic impedance boundary
that produces the gain effect can offer more possibilities to
fulfill the high-Q condition at different frequencies. Finally,
a sensor model for particle size detection is proposed based
on the gain-assisted system with quasi-BICs. The good sens-
ing performance with high FoM is illustrated to demonstrate
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the advantages of the studied high-Q acoustic system. The
proposed method can be used to achieve high quality factors
in acoustic systems with nontrivial intrinsic damping and
improve the sensing performance of acoustic sensors and
detection devices.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10338-024-00530-3.
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