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Abstract Nonlinear metamaterials (NLMs) have

recently garnered significant interest for their abilities

to achieve wide bandwidth in vibration attenuation

and wave manipulation. However, NLMs proposed

have been predominantly theoretical and conceptual

due to nonlinearity being introduced through discrete

spring models rather than the practically achievable

components. To overcome this shortcoming, this

paper proposes an original integrated design strategy

leveraging a mono-slender beam configuration to

tailor nonlinear stiffness and form quasi-linear, hard-

ening and softening resonators. By adjusting only one

geometric parameter of the beam, transitions between

different nonlinear types can be realized. The nonlin-

ear behaviors of resonators are verified through static

force–displacement curves and frequency-amplitude

responses. Subsequently, a metamaterial beam com-

prising a linear host beam and periodically distributed

integrated hardening and softening nonlinear res-

onators is constructed. The dispersion relation for an

infinite-size beam is derived using the transfer matrix

method. The resulting complex band structure and

nonlinear frequency response reveal that the bandgap

is amplitude-dependent and more importantly, broad-

ened due to the introduced nonlinearities. Further-

more, vibration attenuation in a finite NLM beam is

demonstrated in a broad nonlinear-dependent fre-

quency region which aligns well with the predicted

bandgap. The analysis of the power spectral density

within this region indicates that the attenuation is due

to frequency dissipation caused by the nonlinear

interaction between the resonators and the host beam.

This study presents a promising solution for advancing

the practical application of nonlinear metamaterials.

Keywords Nonlinear metamaterial � Wideband

attenuation � Hardening nonlinearity � Softening
nonlinearity � Integrated resonators

Abbreviations

A Output root-time-square amplitude of

the time domain

A0 Initial excitation amplitude

Dx,Dy End displacement in the x and y direction

dx,dy Normalized displacement in the x and y

direction

E,E0 Young’s modulus of

hardening/softening beam and host

beam

f x, f y,mz Normalized forces and moment in x and

y directions and around z-axis
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f hðyÞ,f sðyÞ Force–deflection characteristic of the

hardening/softening nonlinear part

gij, pij, qij Nondimensional beam characteristic

coefficients

H Transfer matrix for the NLM beam

I0 Moment of inertia for the NLM beam

kh1,ks1 Linear stiffness coefficients

khi,ksi Nonlinear stiffness coefficients

l Beam length

lc Lattice constant of the periodic structure

m1
j ,m

2
j

Mass parameters for the j-th unit cell in

the system

Mz Moment in the z-direction

Q Parameter capturing the beam’s tilt

influence

S0 Cross-sectional area of the beam

t0 Out-of-plane thickness of the beam

T Vibration transmission

ux, uy,a End displacements in the x and y

directions and rotation angle

WðxÞ Mode shape function

Wjðx0Þ Mode function for the j-th unit cell

UðxÞ Shape function of the beam modes

wðx; tÞ Transverse deflection of the beam

g Degree of nonlinearity

h Initial angle between the beam’s

centerline and the vertical direction

m Flexural wavenumber

q0 Density of the material for host beam

fh,fs Damping ratios for hardening and

softening components

x Angular frequency

Xh,Xs Non-dimensional excitation frequencies

for hardening and softening components

1 Introduction

Research in science and engineering continuously

focuses on overcoming the mechanical limitations of

traditional materials and structures. Metamaterials, as

engineered micro-structured materials with extraordi-

nary properties, provide fresh insights and inspiration

toward attaining this aim. Over the past several

decades, metamaterials have been successfully

applied to various fields, including vibration attenu-

ation [1, 2], cloaking devices [3, 4], superlenses [5, 6],

negative refraction [7], and directional waveguide

[8, 9].

Metamaterials also offer an effective way to

manipulate wave propagation and vibration through

their frequency bandgap, which controls wave prop-

agation. A notable subset of these metamaterials is

locally resonant (LR) metamaterials, designed to

suppress wave propagation in low-frequency ranges,

overcoming the limitations of Bragg scattering. Con-

sequently, this innovation has led to the development

of practical meta-beams [10, 11], meta-plates [12, 13],

and meta-surfaces [14] capable of suppressing elastic

wave and vibration propagation. The majority of

current designs of locally resonators exhibit linear

dynamic behavior, represented by mass-membrane

[15, 16], mass-rubber [17], mass-screws [18], beam-

type [19, 20], plate-type [21, 22] structures and

piezoelectric transducers [23, 24] with electrical

shunting.

However, due to their inherently linear resonance

mechanisms, their effective bandwidth is narrow. In

contrast, nonlinear dynamic characteristics not only

widen the bandwidth but also introduce new mecha-

nism, revealing interesting wave propagation phe-

nomena absent from linear metamaterials (LMs), such

as harmonic generations [25], dispersion modulation

[26, 27], amplitude-dependent bandgaps [28–30],

nonreciprocal wave propagation [31], and solitary

waves [32, 33].

Recent endeavors to analyze elastic wave propa-

gation in nonlinear metamaterials still utilize mass-

spring chain systems or continuous linear host struc-

ture with array of distributed 1-DOF virtual nonlinear

mass-spring absorbers. These studies emphasize the

importance of introducing nonlinearity in periodic

chains on wave propagation and attenuation, demon-

strating nonlinear modeling methods form a theoret-

ical perspective. For example, Narisetti et al. [34]

analyzed frequency-dispersion shifts in nonlinear

monoatomic chain with hardening and softening

nonlinear using perturbation method. Manktelow

et al. [35] used a multiple scales method to study the

wave-wave interactions in similar system. In [36], the

feasibility of employing a purely nonlinear mass-in

mass system as unit cells for broad bandwidth

metamaterial was explored. Yu et al. [37] numerically

analyzed the wave attenuation in a 1D metamaterial

with different nonlinear subunits. Fang et al. [38]

demonstrated that large amplitudes in strongly
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nonlinear triatomic chains could widen the bandgap.

Shen et al. [39] focused on 1D metamaterial beams

with embedded nonlinear resonators exhibiting soft-

ening or hardening cubic nonlinearity. Their study

demonstrated that these nonlinearities can signifi-

cantly enhance the bandgap width. Additionally, Shen

et al. [40] further investigated 2D metamaterial

honeycombs with periodically distributed nonlinear

resonators designed in a spider web-like configuration.

This research shows how the nonlinearities, whether

softening or hardening, can be optimized to signifi-

cantly enhance the bandgap width. Our previous work

[41] proposed an ultra-broad bandgap strategy induced

by combining hardening and softening nonlinearity in

a triatomic chain, showing that the bandgap could be

more than twice as wide as in the corresponding linear

case. Casalotti et al. [42] proposed a metamaterial

beamwith periodic distributed nonlinear 1-DOFmass-

spring absorbers, significantly reducing vibration

associated with the lowest three vibration modes. Xu

et al. [43] combined nonlinearity and damping effects

in a metamaterial beam to achieve a broad bandgap.

Zhou et al. [44] designed a metamaterial beam with

embedded quasi-zero stiffness resonators, achieving a

wide low-frequency bandgap. Fang [45] studied a

vibro-impact resonator periodically attached to the

host beam and showed a novel regime called chaotic

band that can broaden the bandgap for low-frequency

waves. Xia et al. [46] focused on metamaterial beams

with bistable resonators, enhancing bandwidth

through amplitude-dependent nonlinear inter-well

oscillations. Wang et al. [47] proposed a multi-scale

material integrated into a nonlinear metamaterial

beam for whole-band vibration absorption across

low, medium, and high-frequency ranges by replacing

the mass components with composite mass bodies

filled with microscopic particles.

These endeavors have proven that, when compared

to LMs, nonlinearity provide new approaches to widen

band gaps and enrich wave propagation phenomena.

However, the introduction of nonlinear dynamic

behavior through theoretical discrete spring models

rather than real, physically realizable components

implies that nonlinear metamaterials remain largely

theoretical and conceptual. From a practical applica-

tion perspective, nonlinear metamaterials need to be

designed and fabricated from the resonator level to the

metamaterial level to enable one to realize the

proposed nonlinear dynamic characteristic practically.

Although several applications have been reported in

vibration energy harvesting [48, 49], vibration isola-

tion [50, 51], and shock absorption [52], where

nonlinearity is realized using combinations of linkages

[53], an X-shaped structure [54, 55], and magnets [56].

Moreover, Vakakis et al. [57] showed that through

purely geometric effects it is possible to achieve

transitions from hardening to softening nonlinearity in

an single degree of freedom oscillator composed of

multiple stiffness elements. Fan et al. [58] presented a

novel design of nonlinear magnetic mass-beam res-

onators capable of exhibiting hardening or softening

nonlinearities. Their work, which includes both the-

oretical and experimental investigations, reveals tun-

able band gaps. Furthermore, Shen et al. [59] proposed

metamaterial lattices embedded with piezoelectric

membrane-shaped nonlinear resonators, demonstrat-

ing the potential of such resonators to maximize the

bandgap width and adaptability. Li et al. [60] proposed

a nonlinear pendulum metamaterial capable of realiz-

ing an ultra-low-frequency field effect bandgap. These

designs of nonlinear metamaterials often involve

multiple mechanical components, which can result in

resonators that are less robust and compact, posing

significant challenges for their direct use in metama-

terials. To address these issues, only a few recent

research has been increasingly focusing on the devel-

opment of structurally integrated design approaches

for nonlinear resonators. Zhao et al. [61] introduced a

nonlinear damped metamaterial capable of achieving

wideband vibration attenuation by integrating inertia

amplifiers as nonlinear local resonators into a linear

host structure. Yu et al. [62] proposed nonlinear

metamaterial beam embedded with Kresling origami

configuration under large deformations and demon-

strate the emergence of unique frequency components

resulting from nonlinear coupling stiffness.

An integrated structural design strategy that allows

for the customization of nonlinear stiffness character-

istics holds significant promise for advancing the

practical use of nonlinear metamaterials. In this study,

we present a novel approach using a mono-slender

beam configuration that achieves the desired nonlinear

force–displacement behavior. The proposed beam

configuration is mechanically robust due to its

simplicity, as it comprises only a few beam compo-

nents. This design is also extremely compact, reliable,

and efficient in terms of minimal space and weight

constraints. By changing one geometric parameter
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only, different qualitative and quantitative shapes of

the force–displacement curve, and thus the nonlinear

stiffness, can be effectively realized. This includes

quasi-linear, weak hardening, Duffing hardening,

softening, quasi-zero, and bistable characteristics.

This work, therefore, provides a significant step

forward in the design of compact, robust, and efficient

nonlinear metamaterial systems.

Following this introduction and extending our

previous work [41] on broad bandgap creation through

combined hardening and softening nonlinearities in

triatomic mass-spring chains, Sect. 2 presents a con-

ceptual model of metamaterial beam with integrated

hardening and softening nonlinear resonators, accom-

panied with its Euler–Bernoulli beam-based mathe-

matical modelling. It further elucidates the transition

strategy from hardening to softening nonlinearity in a

mono-slender beam, providing designers with a pow-

erful tool to characterize both hardening and softening

nonlinearities. The proposed designs are theoretically

verified through static force–displacement curves and

dynamic amplitude-frequency response curves. Sec-

tion 3 investigates the propagation of flexural waves

in such a metamaterial beam using the transfer matrix

method based on the Floquet-Bloch theorem. Sec-

tion 4 numerically verifies the wideband vibration

attenuation due to hardening and softening nonlinear-

ity. Section 5 draws the conclusion of this work.

2 Modeling of the NLM beam

2.1 Conceptual model

Schematic of the proposed NLM beam is shown in

Fig. 1a. It comprises a host beam and periodically

attached hardening and softening resonators. The host

beam undergoes linear deformation, while nonlinear-

ity is introduced through the attached resonators. As

depicted in Fig. 1b, each resonator consists of both a

hardening and softening nonlinear component. The

hardening nonlinearity is achieved via the large

deformation of four parallel flat beams, while the

softening nonlinearity is generated from the large

deformation of four oblique beams. The massm1 is the

connecting structure (green frame) between the

beams, while the mass m2 is orange center mass

connecting the four oblique beams.

Consequently, the resonator unit can be modeled as

a nonlinear spring-mass resonator with two degrees of

freedom, i.e. with two spring-mass oscillators

arranged in series. The equivalent mechanical model

of the finite metamaterial beam, featuring an array of

periodically arranged nonlinear hardening and soften-

ing spring-mass resonators, is shown in Fig. 1c. This

model can be utilized subsequently to analyze the

propagation of flexural waves in the NLM beam using

the transfer matrix method based on the Floquet-Bloch

theorem.

2.2 The hardening–softening transition

in the nonlinear response of a fixed-guided

beam

It has been demonstrated that the nonlinear response of

a beam significantly depends on its geometric config-

uration and the type of boundary condition being

imposed [63–65]. Typically, the load–deflection char-

acteristic of a doubly clamped beam can be modeled as

a Duffing hardening spring. Mettler [66] first recog-

nized that for axially restrained beams, the dominant

nonlinearity arises from the axial stretching, with

curvature-induced nonlinearity being negligible.

Therefore, this work aims to develop an efficient

method to intentionally tune the axial stretching

through different initial angle configurations, which

provides a powerful tool for the designers to achieve

hardening or softening nonlinearities. Figure 2a illus-

trates the nonlinear deflections of a fixed-guided beam

at three initial angle configurations. The normalized

force–displacement relationship is expressed as

bf i � by, where bf i ¼ f i=maxðf iÞ and by ¼ y=l. By choos-

ing different initial angle h between the beam’s

centerline and the vertical direction, we show that it

is possible to tune the axial strength level and

therefore, achieve the hardening–softening transition

in the beam’s nonlinear deflection results. When the

angle h increases, a transition can be observed from

hardening nonlinearity to softening nonlinearity and

eventually turn to a bistable type with negative

stiffness. So, there are three cases considered: Case

(i), with h\p=2, Case (ii), with h ¼ p=2, and Case

(iii), with h[ p=2: Specifically, Case (ii) is similar to

the half-symmetry case of the doubly clamped beam

and therefore, the force–displacement relationship

exhibits Duffing hardening nonlinearities, as seen in
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Fig. 2a. Case (i) is an initially downward-inclined

beam configuration, which produces less axial stretch-

ing than that produced by the flat beam configuration

in Case (ii) and therefore, mainly provides hardening

nonlinearity, but the hardening strength is weaker than

Case (ii). In Case (iii), the axial stretching starts at a

Fig. 1 a Schematic of a

finite metamaterial beam

with attached hardening and

softening nonlinear

resonators, b Hardening and

softening nonlinear

resonators as continuous

elements, c Equivalent
mechanical model of the

finite metamaterial beam

with an array of periodic

hardening and softening

nonlinear spring-mass

resonators arranged in series

Fig. 2 a Three cases

showing different initial

angles h of a fixed-guided

beam and their

corresponding normalized

load–deflection schematic

diagrams. Case (i): h\p=2,
Case (ii): h ¼ p=2, Case
(iii): h[p=2;
b (a) Generalized flexible

beam
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negative value (the beam is compressed initially) and

then changes to positive values, which is similar to a

buckled configuration that enables the realization of

softening nonlinearity. Thus, the ability to transition

between hardening and softening responses through

simple geometric adjustments (changing h) in a fixed-
guided beam provides significant design flexibility for

targeting specific nonlinearities. Additionally, this

approach can be easily implemented in the fabrication

process.

The nonlinear static properties of various geometric

initial angle configurations can be derived using the

Beam-Constraint Model (BCM) [67]. The BCM has

been proven to accurately capture the large deflections

of flexible beams in compliant mechanisms. Addi-

tionally, the BCM is simple, parametric, and provides

closed-form solutions.

Figure 2b illustrates a generalized flexible beam in

its undeformed and deformed states with end-loads Fx,

Fy, Mz and end displacements Dx, Dy, a. These loads
and displacements are normalized with respect to the

beam parameters and are given by the following

expressions:

fx ¼
Fxl

2

EI
; fy ¼

Fyl
2

EI
;mz ¼

Mzl
2

EI
; dx ¼

Dx
l
; dy ¼

Dy
l

ð1Þ

where I represents the moment of inertia of the

rectangular section, and E and t represent the Young’s

modulus and thickness of the beam, respectively. The

BCM characterizes the load–deflection relationships

of the beam through the following parametric and

closed-form equations:

f y
mz

� �

¼ g11 g12
g21 g22

� �

uy
a

� �

þ f x
p11 p12
p21 p22

� �

uy
a

� �

þ f 2x
q11 q12
q21 q22

� �

uy
a

� �

ð2Þ

ux ¼
t2f x
12

� 1

2
uy; a
� � p11 p12

p21 p22

� �

uy
a

� �

� f x uy a
� � q11 q12

q21 q22

� �

uy
a

� �

ð3Þ

In these equations, the coefficients gij, pij and qij
(i,j ¼ 1, 2) are nondimensional beam characteristic

coefficients listed in Table 1, as provided in the

referenced source [67].

To more accurately capture the large deflection

behavior of the beam, each configuration shown in

Fig. 2a can be divided into several elements, with each

element modeled sequentially by the BCM. This

process, known as the Chain Beam-Constraint Model

(CBCM) [68], allows for the calculations of the force–

displacement nonlinear relations of the beam by

applying the BCM equations to each element and

incorporating the boundary constraints.

2.3 Design of the hardening nonlinear resonator

As depicted in Fig. 3a, the hardening nonlinear

component consists of four clamped flat beams. Due

to the structured symmetry of the resonator unit cell,

each of these beams can be modeled as Case (ii) in

Fig. 2a. Consequently, the load–deflection character-

istic of the hardening nonlinear part can be expressed

as:

f h yð Þ ¼ 4f 2 ð4Þ

where f 2 is obtained using the CBCM method

described in Sect. 2.1.

With the parameters l ¼ 40mm, t ¼ 0:025 � l, beam
width b ¼ 10mm, and Young’s modulus

E ¼ 194� 109Pa, the force–displacement curve

obtained via CBCM is plotted in Fig. 3b. A finite

element (FE) analysis was also conducted using the

commercial FE software ANSYS. In this analysis, the

beam part was modeled using the Beam 189 element

type, while the remaining part was modeled using the

Plane 182 element with a large modulus of elasticity to

simulate a rigid body mass. The force–displacement

curves obtained from the FE analysis are shown as a

dashed line in Fig. 3b, demonstrating good agreement

with the CBCM results.

The force–displacement characteristic can be mod-

eled by a hardening Duffing spring as:

f h ¼ kh1yh þ kh3y
3
h. The dimensionless displacement

is defined asbyh ¼ yh=l. The Duffing fitting result is

plotted as hollow circles in Fig. 3b. We notice that the

elastic force can be divided into two components: a

linear term due to the bending and a nonlinear term

due to the axial stretching. This division has been

reasonably demonstrated in the design of hardening

Duffing energy harvesters [65]. Therefore, by varying

the ratio of bending strain to stretching strain, the

nonlinear term can be intentionally designed. The
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slenderness ratio of the beam is a critical parameter

affecting this variation of the ratio of the bending

strain and stretching strain and therefore, further

affects the degree of nonlinearity. The slenderness

ratio is defined as¼ t=l. The degree of nonlinearity g is
defined as the ratio of the nonlinear stiffness term to

the linear stiffness term. For a hardening Duffing

nonlinear system, this parameter g is defined as: gh ¼
3kh3y

2
h

kh1
where gh [ 0 indicates stiffness hardening and

gh\0 indicates stiffness softening. Figure 3c illus-

trates the effect of the slenderness ratio on the degree

of nonlinearity. First, it is evident that the degree of

nonlinearity increases as the slenderness ratio

decreases for the same level of excitation. Conse-

quently, the corresponding backbone curve and the

amplitude-frequency branches bent downwards, yield-

ing the lower amplitude for smaller slenderness ratios.

Theoretically, for a quasi-zero thickness beam

(k � 0), one has that the linear stiffnesskh1 � 0. In

this scenario, the static characteristic resembles a

tensioned wire, where only axial stretching deforma-

tion is considered, not bending deformation.

To quantify the design hardening nonlinearity, the

hardening nonlinear component shown in Fig. 3a can

be simplified to a single degree of freedom Duffing

oscillator under base excitation. The multiple scales

method [69] was used to solve the frequency response

curves of the hardening nonlinear resonator. The

derivation procedure according to the standard mul-

tiple scales method is detailed in Appendix A1. In

Fig. 3d, we illustrate the effect of varying the

slenderness ratio k on the frequency hardening with

a constant excitation amplitude byh0 ¼ 0:01. When the

slenderness ratio k increases, a noticeable reduction in
the leaning tendency toward higher frequencies can be

found, indicating that the hardening nonlinearity

decreases. Conversely, when the slenderness ratio k

Table 1 The nondimensional characteristic coefficients of the BCM matrices

g11 g12 ¼ g21 g22 p11 p12 ¼ p21 p22 q11 q12 ¼ q21 q22

12 - 6 4 6/5 - 1/10 2/15 - 1/700 1/1400 - 11/6300

Fig. 3 a Hardening

nonlinear resonator,

b Hardening nonlinear

force–displacement

verification case; c The
influence of slenderness

ratio and excitation

amplitude on the degree of

nonlinearity, d Nonlinear

dynamic response of the

equivalent dynamic model

of resonator cell with

different slenderness ratios
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decreases, the hardening nonlinearity increases. This

relationship paves the way for achieving the des-

ignable nonlinearity at small-amplitude vibration via

the beam’s slenderness ratio tuning.

2.4 Design of the softening nonlinear resonator

As analyzed in Sect. 2.1, introducing a buckled

configuration can lead to the stiffness softening. Thus,

by adjusting the initial configuration angle of the

beam, we show that it is possible to achieve the

softening response. The equivalent softening spring

design requires symmetrical reciprocating motion at

the equilibrium position, implying a symmetrical

static response. Therefore, a symmetrically structural

design is essential. As shown in Fig. 4a, the softening

nonlinear component consists of a pair of beams from

Case (i) and a pair of beams from Case (iii), resulting

in a symmetrical configuration. The load–deflection

characteristic of the softening nonlinear part is

expressed as:

f s yð Þ ¼ 2ðf 1 þ f 3Þ ð5Þ

where f 1 and f 3 can be obtained using the CBCM

method described in Sect. 2.1.

With the parameterst ¼ 0:005 � l,h ¼ 93
�
, and

other parameters being consistent with those of the

hardening part, the corresponding force–displacement

curve obtained by CBCM is plotted in Fig. 4b. The

slope of the curve decreases, indicating softening

stiffness. Additionally, the force–displacement curve

obtained from FEA and polynomial fitting results are

also plotted in Fig. 4b, showing a good agreement.

Different from the hardening Duffing fitting, the

softening force–displacement characteristic is fitting

by the polynomials as f s ¼
Pn

i¼1ksiys
i (n ¼ 8). The

dimensionless displacement is defined asbys ¼ ys=l. To

gain deeper understanding of the full potential of the

initial configuration angle design on the resulting

nonlinear type, we further consider the combined

influence of the slenderness ratio and the initial

configuration angle on the corresponding nonlinear

response. Hence, we introduce the parameter of

interest Q ¼ coshj j
k , to quantitatively capture this

influence. It is worth noting that Q represents the ratio

of the span height of the oblique beam to the thickness

of the beam. A higher Q indicates a greater tilt of the

beam. Similar to the hardening nonlinear case, the

degree of nonlinearity g is defined as the ratio of the

nonlinear stiffness term to the linear stiffness term,

Fig. 4 a Softening

nonlinear resonator, b
Softening nonlinear force–

displacement verification

case; c The influence of the
parameter Q and excitation

amplitude on the degree of

nonlinearity, d Nonlinear

dynamic response of the

equivalent dynamic model

of resonator cell with

different Q
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asgs ¼
Pn

i¼2
iksiys

i�1

ks1
. It is also noteworthy that gs [ 0

means hardening stiffness, while gs\0 means soften-

ing stiffness. As shown in Fig. 4c, as Q increases, an

apparent transition from hardening to softening effects

is seen. More explicitly, to achieve a softening

nonlinear type, Q must exceed a certain threshold.

Otherwise, the system remains hardening nonlinear.

Furthermore, we investigate this transition by simpli-

fying the softening part in Fig. 4a to an equivalent

single degree of freedom oscillator. The equivalent

spring is determined by the fitting polynomial men-

tioned earlier. The fundamental mode frequency

response for this polynomial nonlinear type can be

solved using the multiple scales method [69]. The

derivation procedure is detailed in Appendix A2. As

illustrated in Fig. 4d. By varying the parameter Q and

with a constant excitation amplitudebys0 ¼ 0:001, the

transition from nonlinear hardening to softening is

clearly depicted. Specifically, as Q changes from Q ¼
2 to Q ¼ 4, the hardening nonlinearity weakens to an

approximately linear type of the response. As Q

increases from Q ¼ 4 to Q ¼ 8, the softening nonlin-

earity becomes more apparent.

3 Propagation of flexural wave in NLM beam

3.1 Dispersion relation by transfer matrix method

In this section, we study the dispersion of the NLM

beam with nonlinear resonators. The host beam is

modeled using the Euler–Bernoulli beam assumption,

governed by

E0I0
o4wðx; tÞ

ox4
þ q0S0

o2wðx; tÞ
ot2

¼ 0 ð6Þ

where w is the transverse deflection of the beam, E0,

I0, q0, S0 are the elastic modulus, moment of inertia,

density, and cross-section area, respectively.

Assuming the transverse deflection of the beam as

wðxÞ ¼ WðxÞeixt ð7Þ

wherex is the angular frequency andWðxÞ ¼ DUðxÞT
is the mode shape function, with:

D ¼ A B C Df g ð8Þ

UðxÞ ¼ cosðmxÞ sinðmxÞ coshðmxÞ sinhðmxÞf g
ð9Þ

where A, B, C, D are unknown coefficients, m is the

flexural wavenumber and the dispersion relation of the

bare beam without resonators can be expressed as

m4 ¼ q0S0
E0I0

x2. In the jth unit cell where x0 ¼ x� jlc and

jlc � x�ðjþ 1Þlc and lc is the lattice constant, the

mode function can be written as Wjðx0Þ ¼ DjUðx0ÞT,
where Dj ¼ Aj Bj Cj Dj

� �

.

The governing equation of motion for the resonator

can be written down as follows

m1
j €y

1
j þ kh1ðy1j � wðxj; tÞÞ þ kh3ðy1j � wðxj; tÞÞ3

þ ks1ðy1j � y2j Þ þ
Xn

i¼2
ksiðy1j � y2j Þ

i

¼ 0 ð10Þ

m2
j €y

2
j þ ks1ðy2j � y1j Þ þ

Xn

i¼2
ksiðy2j � y1j Þ

i ¼ 0 ð11Þ

We consider only fundamental wave propagation

and, thus, it is assumed that

y1j ¼ Wj 0ð Þ þ Y1

� 	

eixt þ cc: ð12Þ

y2j ¼ ðWjð0Þ þ Y1 þ Y2Þeixt þ cc: ð13Þ

where Y1 is the motion amplitude of mass m1 relative

to the connection point, and Y2 is the motion

amplitude of mass m2 relative to m1. By substituting

Eqs. (12–13) into Eqs. (10–11), and using the multiple

scales method to this polynomial nonlinear system, we

obtain

� ðm1
j þ m2

j Þx2 Wj 0ð Þ þ Y1

� 	

þ kh1Y1 þ 3=4kh3Y
3
1

� m2
jx

2Y2 ¼ 0

ð14Þ

� m2
jx

2 Wj 0ð Þ þ Y1 þ Y2

� 	

þ ks1Y2 � 5=6k2s2Y
3
2

þ 3=4ks3Y
3
2 ¼ 0

ð15Þ

The derivation procedure is detailed in Appendix

A3. These two equations can be used to obtain the

amplitudes Y1 and Y2.

Considering the continuities of the displacement,

slope, bending moment and shear force at the attach-

ing point of the resonator, and employing the Floquet-

Bloch theorem Dj ¼ eiqlcDj�1 and the transfer matrix
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method, the dispersion relation of the NLM beam can

be derived as

G�1H� eiqlcI










 ¼ 0 ð16Þ

where I is the identity matrix, q is the bending wave

vector, and H and G from Eq. (16) are defined by

H¼

cos mlcð Þ sin mlcð Þ cosh mlcð Þ sinh mlcð Þ
�vsin mlcð Þ vcos mlcð Þ vsinh mlcð Þ vcosh mlcð Þ
�v2cos mlcð Þ �v2sin mlcð Þ v2cosh mlcð Þ v2sinh mlcð Þ
EIv3sin mlcð Þ �EIv3cos mlcð Þ EIv3sinh mlcð Þ EIv3cosh mlcð Þ

2

6

6

4

3

7

7

5

ð17Þ

G ¼

1 0 1 0

0 m 0 m
�m2 0 m2 0

g41 �EIm3 g43 EIm3

2

6

6

4

3

7

7

5

ð18Þ

where

g41 ¼ g43 ¼
� m1

jx
2 Wjð0Þ þ Y1

� 	

þ m2
jx

2 Wjð0Þ þ Y1 þ Y2

� 	

� �

Wjð0Þ

ð19Þ

Strictly speaking, the Floquet-Bloch theorem can-

not be applied to nonlinear periodic systems, and a

recent review [70] of nonlinear metamaterials pro-

vides a detailed discussion for the applicability of

Bloch’s theorem. In our study, the nonlinearity is

localized within the constitutive properties of the local

resonators. Perturbation techniques allow the nonlin-

ear field equations to be approximated by a hierarchy

of linear equations, enabling a reasonable application

of Floquet-Bloch conditions for analyzing dispersion

features in nonlinear periodic systems.

For a given frequency, the wave vector solution can

be obtained from the dispersion relation. In the special

case where khi ¼ ksi ¼ 0,ði[ 2Þ, Eq. (16) degenerates
into the linear dispersion relation.

3.2 The frequency responses and bandgap

structure

The effects of nonlinearity of the attached resonator

unit on the frequency band structure, particularly on

the widths of the bang gaps, are investigated as

illustrated in Fig. 5. Here, the parameters are set as

follows: the lattice constant lc ¼ 60mm, Young mod-

ulus E0 ¼ 70� 109Pa, the density q0 ¼ 2700kg/m3,

the thickness of the beam t0 ¼ 2mm, the out-of-plane

thickness b0 ¼ 128mm. The geometric parameters of

the hardening beam and the softening beam are the

same as those in Figs. 3b and 4b respectively. The

mass parameters m1 ¼ 0:385� 10�1kg and

m2 ¼ 0:086� 10�1kg.

First, the linear case was considered as having the

same constant linear spring stiffness coefficients as the

attached resonator. As shown in Fig. 5a–b, two

resonant modes are identified in the frequency

response of the attached resonator. Furthermore, each

resonant mode frequency generates a bandgap, as

predicted by both the imaginary and real parts in

Fig. 5c–d.

For the nonlinear cases, the effects of the excitation

amplitude are examined. It is observed that in the

amplitude-frequency curve of mass m1 shown in

Fig. 5a, there is the antiresonance between two

distinctive resonances, while in the amplitude-fre-

quency curve of mass m2 shown in Fig. 5b, there is a

well between them, which descends and flattens

toward 0 dB. The first-resonance branches bend

toward lower frequencies, corresponding to the soft-

ening behaviour, while the second-resonance branches

exhibit multiple bending: first towards lower frequen-

cies and then towards higher frequency, implying the

mixed softening-hardening type of the behaviour [71].

The degree of this bending increases with the excita-

tion amplitude.

The complex bandgap structure is particularly

intriguing, as depicted in Fig. 5c–d. For real parts,

similar to the amplitude-frequency curves, frequency-

real-wavevector curves lean toward lower or higher

frequencies, resulting in multiple values of real

wavevector corresponding to certain frequencies. It

is noted that the actual possible frequency-wavevector

depends on the stable amplitude-frequency responses.

The imaginary part can directly characterize the wave

attenuation characteristics and the bandgap region, so

it can more clearly reflect the effects of nonlinear and

excitation amplitude on the bandgap. In Fig. 5c, d, the

grey shaded area represents the bandgap region for

linear case. For nonlinear case, the high frequency

branch corresponding to the second band gap bends

toward lower frequencies, causing the second bandgap

to extend to lower frequencies and approach the first

bandgap. Explicitly, as the excitation amplitude

increases, this extension becomes more apparent.

Additionally, the low frequency branch corresponding
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to the first band gap bends toward a zero-frequency

value, which seem to reflect a bandgap starting at zero

frequency. However, we point out that, essentially,

this apparent zero-frequency bandgap is misleading,

as the new emerging imaginary branch starts from zero

frequency results from an unstable amplitude-fre-

quency curve. This is further evident by numerical

calculations of wave propagation in NLM beam in the

following Sect. 4.

4 Numerical verifications

To further validate our analytical results, FE simula-

tions were conducted. As illustrated in Fig. 6a, an

NLM beam with a finite length consisting of 8

resonator units with free-free boundary condition

was modeled in ANSYS. The relevant geometry,

material andmass parameters are consistent with those

in Sect. 3.2. An external sinusoidal excitation xin ¼
A0sinxt was applied on the left-band side of the beam.

The simulation utilized 8-node Solid185 element type,

and a mesh convergence analysis was performed out to

ensure the adequate numerical accuracy. The mesh

details of the attached resonator are shown in Fig. 6b.

A time-domain nonlinear transient analysis was

conducted to obtain the time transient displacement

for the nonlinear case. By maintaining constant

frequency and amplitude of excitation for 100 periods,

the transient oscillations dissipate, resulting in steady-

stable periodic motion. The time step was fixed at 1/20

of the excitation period. Therefore, 20,000 calculation

steps are required for each excitation frequency. This

made the computation of a single transmissibility

curve extremely time-consuming. To reduce the

calculation time, as shown in Fig. 6c, the beam

structure was modeled using the Beam189 element

type, and the corresponding mass body was modeled

by the Mass21 element type. The remaining connec-

tion parts were treated as rigid connection and

modeled using node coupling technology in ANSYS.

Specifically, the node-coupled sets for connections

were defined as follows: CP1 for the main beam-to-

hardening beam, CP2 for the hardening beam-to-m1-

to-softening beam, CP3 for the softening beam-to-m2.

This beam element-dominated modeling method

Fig. 5 a Amplitude-

frequency response of mass

m1 for different excitation

amplitudes, b Amplitude-

frequency response of mass

m2 for different excitation

amplitudes, c Real part of
bandgap structure for

different excitation

amplitudes. d Imaginary

part of bandgap structure for

different excitation

amplitudes
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significantly reduced the number of solid mesh

divisions, thus significantly decreasing the calculation

time.

We further compared the first two Y-direction

vibration modes of the additional resonator modeled

with Solid185 element and Beam189 element respec-

tively. As shown in Fig. 7, the deformation modes of

the resonator in the first two modes of the two

modeling methods are consistent. The motion of m1

andm2 is in phase at the 1st mode and antiphase at 2nd

mode. Moreover, the modal frequency errors between

the two modeling methods are minimal, as listed in

Table 2, which also demonstrates the effectiveness of

the beam element-dominated modeling method.

Based on the above time-domain nonlinear tran-

sient behaviour of the beam element-dominated FE

model, the vibration transmission is defined as

T ¼ 20log A=A0j j, where A is the output average

amplitude determined by the root-time-square ampli-

tude of the time domain at a specifical frequency. For

comparison, a frequency-domain harmonic response

analysis was performed to predict the transmissibility

characteristics for the linear case.

4.1 Wave transmissibility and verification

of the band structures

As shown in Fig. 8a, we compared the wave trans-

missibility for the linear and nonlinear systems under

different excitation amplitudes and the following

remarks can be made. First, for the linear case, the

band gaps presented in the transmissibility align well

Fig. 6 a FE model of finite

length NLM beam, b Mesh

details of attached resonator

using Solid185 element

type, c Simplified FE model

of resonator using Beam189

element type and node

coupling technique

Fig. 7 a 1st mode shape of the resonator modeled by Solid185,

b 2nd mode shape of the resonator modeled by Solid185, c 1st
mode shape of the resonator modeled by Beam189, d 2nd mode

shape of the resonator modeled by Beam189. Note that to clearly

show the modal shapes, the modal shapes are scaled up, so there

is no actual penetrate or contact constraint in the FE simulations
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with the predicted one from the imaginary part of the

wave vector. Second, for a small excitation amplitude,

the nonlinear effect is negligible. Consequently, the

comparison between the linear case and the small

excitation amplitude shows good agreement. The

minor differences observed are primarily due to the

use of a linear frequency domain analysis for the linear

case and the nonlinear transient analysis for the small

excitation amplitude case. Finally, and more impor-

tantly, as the excitation amplitude increases, the

resonant peak amplitudes are significantly suppressed

before the original second linear band gap regions.

Additionally, the attenuation region gradually expands

to lower frequencies. Specifically, for A0 ¼ 0:01, the

three resonant peaks before the second band gap are

suppressed. For A0 ¼ 0:02, the four resonant peaks

before the second band gap are suppressed. Notably,

for A0 ¼ 0:03, the resonant peaks between two

original linear bandgaps are suppressed. As a result,

the two bandgaps are merged through the nonlinear-

induced attenuation region. with a -5 dB threshold, the

width of this nonlinear-induced attenuation region is

340% of the original second linear bandgap. More-

over, the frequency boundary of this attenuation

region matches well with the predictions from the

imaginary part in Fig. 5d.

Fig. 8 a The wave

transmissibility for the

linear and nonlinear systems

with a varying excitation

amplitude; b Comparison of

the normalized

displacements at 325 Hz

between the linear case and

the nonlinear case with

A0 ¼ 0:03; c–d Normalized

phase diagrams represented

by the response trajectories

between the normalized

displacement and velocity

for the linear case and the

nonlinear case with

A0 ¼ 0:03; (e) Waterfall

plot of the power spectrum

density (PSD) at the

excitation frequency of 325

Hz. The colors correspond to

the value 10log10ðPSDÞ

Table 2 Comparison of modal frequency between two mod-

eling methods

Modeling by

Solid185

Modeling by

Beam189

Error

1st mode 164.0 159.3 2.9%

2nd mode 415.9 409.0 1.6%
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Figure 8b shows the comparison of normalized

displacement bA ¼ A=A0 at 325 Hz between the linear

case and the nonlinear case with A0 ¼ 0:03, where

significant attenuation is observed compared to the

linear case. The corresponding phase diagrams shown

in Fig. 8c–d also reveals the linear periodic oscillation

and complex nonlinear aperiodic oscillation modes.

To further understand the mechanism of this attenu-

ation region, we investigated the influence of the

excitation amplitude on the power spectral density of

the output response of the measurement point. As

shown in Fig. 8e, at 325 Hz, when A0 ! 0, we

observe a linear resonance with energy localized at

the driving frequency. As A0 increases beyond a

critical value (A0c), energy is no longer localized

solely at the driving frequency but disperses over a

broad frequency domain. Obviously, a partial enlarge-

ment of Fig. 8e reveals another branch of power

spectral localization below the driving frequency.

5 Conclusion

This work has been inspired by the fact that the use of

nonlinear oscillators in nonlinear metamaterials has

been proven to be beneficial for achieving wide

bandwidth, but this has been predominantly theoret-

ically and conceptually done with the nonlinearity

introduced via discrete spring models, which are not

thus convenient for practical realization. To overcome

this shortcoming, this study has provided an innova-

tive design of a metastructure involving a mono-

slender beam with integrated resonators whose stiff-

ness can be customized to be quasi-linear, hardening,

softening or bistable. The additional benefit of the

design proposed lies in the fact that a desirable form of

nonlinearity in the resonator can be achieved by

adjusting only one geometric parameter of the res-

onator. Thus, each resonator has been constructed to

correspond to a serial combination of two nonlinear

oscillators, the stiffness of the first one is tailored to be

hardening, while the second one is softening. Physical

realizations of these oscillators correspond to two

block masses attached symmetrically to four beams. In

the hardening oscillators, the beams are clamped and

initially flat, while their slenderness ratio can be

appropriately chosen to achieve a desirable level

(strength) of nonlinearity. In the softening oscillators,

all four beams are initially oblique, and their config-

uration has two orthogonal axes of symmetry. One pair

of them provides negative stiffness, while the other

pair provides approximately linear stiffness; when

combined, they yield softening stiffness.

In the next step, the dispersion relation for such

infinite-size metastructure has been determined ana-

lytically by using the transfer matrix method. The

resulting band structure has been found to be ampli-

tude-dependent but widened with respect to the linear

counterpart. Additionally, the finite element method

has been used to investigate a finite nonlinear metas-

tructure, showing that the nonlinear-induced attenua-

tion region aligns with the predicted bandgap, which is

more than three times as wide as the original linear

second bandgap. The power spectral density analysis

has confirmed that the attenuation is the result of

dissipation caused by the interaction between the

nonlinear resonators and the host beam.
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Appendix A1

For the hardening nonlinear component, the equation

of the equivalent single degree of freedom oscillator

with a mass m1, a linear restoring force kh1y and a

nonlinear restoring force kh3y
3 can be written as

follows

m1 €yh þ c _yh þ kh1yh þ kh3y
3
h ¼ �m1yh0x

2cosðxtÞ
ðA1:1Þ

where c, yh0, x, t are the viscous damping, excitation

amplitude, excitation frequency and time, respec-

tively. By introducing the nondimensional variables

xh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kh1=m1

p

; s ¼ xht;Xh ¼ x=xh, fh ¼
c=ð2m1xhÞ; byh ¼ yh=l; byh0 ¼ yh0=l; a3 ¼ kh3l

2=kh1,

we have the following non-dimensional Duffing

equation

byh
00 þ 2fhbyh0 þ byh þ a3byh

3 ¼ �byh0Xh
2cosðXhsÞ

ðA1:2Þ

where the prime symbol ‘‘0’’ represents the nondi-

mensional time derivative d=ds.
For weak forcing, damping, nonlinearity, the fre-

quency response equation for this system with cubic

Duffing nonlinearity can be determined using the

multiple scales method [61]

byhj j2 1� X2
h þ

3

4
a3 byhj j2

� �2

þ 2fXh byhj jð Þ2

¼ byh0X
2
h

� 	2 ðA1:3Þ

The multiple time scales expansion is carried out to

second order. The detailed parameters of Fig. 3d are

specified as follows: for k ¼ 0:02: a3 ¼ 846.1; for

k ¼ 0:04: a3 ¼ 347.6 and for case k ¼ 0:06:

a3 ¼ 177:0. The damping ratio fh ¼ 0:02.

Appendix A2

Similarly, for the softening nonlinear component, the

equation of the motion of the equivalent single degree

of freedom oscillator with a massm2, a linear restoring

force ks1y, a nonlinear restoring force
Pn

i¼2ksix
i(n ¼ 8) can be written as follows

byhj j2 1� X2
h þ

3

4
a3 byhj j2

� �2

þ 2fXh byhj jð Þ2

¼ byh0X
2
h

� 	2 ðA2:1Þ

By introducing the nondimensional variables

xs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ks1=m2

p

, s ¼ xst, Xs ¼ x=xs,

fs ¼ c=ð2m1xsÞ, bys ¼ ys=l, bys0 ¼ yh0=l,

ai ¼ ksil
ði�1Þ=ks1, the following non-dimensional

equation is.

bys
00 þ 2fsbys0 þ bys þ

Xn

i¼2
aibys

i ¼ �bys0Xs
2cosðXssÞ

ðA2:2Þ

For weak forcing, damping, nonlinearity, the fre-

quency response equation for this system with poly-

nomial Duffing nonlinearity can be determined using

the multiple scales method [61]

bysj j2 1� X2
s �

5

6
a22 bysj j2 þ 3

4
a3 bysj j2

� �2

þ 2fsXs bysj jð Þ2

¼ bys0X
2
s

� 	2 ðA2:3Þ

Higher-order nonlinear terms are approximately

ignored in the frequency response due to the second-

order multiple time scales expansion. The detailed

parameters of Fig. 4d are specified as follows: for

Q ¼ 2, a2 ¼ �7:8� 10�14 and a3 ¼ 4695:3; for

Q ¼ 4, a2 ¼ �9:6� 10�14 and a3 ¼ 39:8; for

Q ¼ 6, a2 ¼ �4:8� 10�15 and a3 ¼ �3482:2; for

case Q ¼ 6: a2 ¼ �8:6� 10�14 and a3 ¼ �7926:5;

The damping ratio fh ¼ 0:02.

Appendix A3

We begin by introducing multiple time scales explic-

itly as Tn ¼ ens for n ¼ 0,1,2. Consequently, the

derivative with respect to s becomes an expansion in

terms of the partial derivatives with respect to Tn:

d

ds
¼ o

oTo
þ e

o

oT1

þ e2
o

oT2

	 Do þ eD1 þ e2D2

ðA3:1Þ

We consider the following dimensionless equation

of motion with quadratic and cubic nonlinearities:

€
by þ by þ a2by

2 þ a3by
3 ¼ 0 ðA3:2Þ
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The solution to Eq. (A3.2) can be expressed as a

series expansion:

by s; eð Þ ¼ by0 T0; T1; T2ð Þ þ eby1 T0; T1; T2ð Þ
þ e2by2 T0; T1; T2ð Þ ðA3:3Þ

Substituting Eq. (A3.3) into Eq. (A3.2) and match-

ing the coefficients of powers of e, we obtain a

hierarchy of sub-problems:

O e0
� 	

: D2
0by0 þ by0 ¼ 0 ðA3:4Þ

O e1
� 	

: D2
0by1 þ by1 ¼ �2D0D1by0 � a2by

2
0 ðA3:5Þ

O e2
� 	

: D2
0ŷ2 þ ŷ2

¼ �2D0D1ŷ1 � 2D0D2ŷ0

�D2
1ŷ

2
0 � 2a2ŷ0ŷ1 � a3ŷ

3
0

ðA3:6Þ

The solution to Eq. (A3.4) can be conveniently

written as:

by0 ¼ Y0ðT1; T2ÞeiT0 þ cc: ðA3:7Þ

where Y0 is a complex amplitude, and cc: denotes the

complex conjugate. Substituting Eq. (A3.7) into

Eq. (A3.5), removing secular terms, and set

Y0 ¼ Y0ðT2Þ, the solution of Eq. (A3.5) is expressed

as:

by1 ¼ a2 �Y0Y0 þ
1

3
Y2
0e

2iT0

� �

þ cc: ðA3:8Þ

Substituting Eq. (A3.7) and Eq. (A3.8) into

Eq. (A3.6) and again eliminating secular terms, we

derive the non-dimensional frequency response,

namely, the frequency modulation equation:

X ¼ 1þ 9a3 þ 10a22
12

Y2
0 ðA3:9Þ

we derive the non-dimensional frequency response,

namely, the frequency modulation equation:

€
by þ ð1þ 9a3 þ 10a22

12
Y2
0Þby ¼ 0 ðA3:10Þ

Substituting the harmonic solution ŷ ¼ Y0e
iXs þ cc

Into Eq. (A3.10), we obtain:

�X2Y0 þ Y0 þ
9a3 � 10a22

12
Y3
0 ¼ 0 ðA3:11Þ

Following the procedure above using Eq. (A3.11)

for the equivalent system of Eq. (A3.2), we can

similarly use the following system of equations as the

agent system for Eqs. (10–11):

�m1
jx

2 Wj 0ð Þ þ Y1

� 	

þ kh1Y1 � ks1Y2 þ 3=4kh3Y
3
1

þ 3=4ks3Y
3
2 � 5=6k2s2Y

3
2

¼ 0

ðA3:12Þ

�m2
jx

2 Wj 0ð Þ þ Y1 þ Y2

� 	

þ ks1Y2 þ 3=4ks3Y
3
2

� 5=6k2s2Y
3
2

¼ 0

ðA3:13Þ

Combining Eqs. (A3.12) and (A3.12), we derive

Eqs. (14–15).
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