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Abstract Nonlinear metamaterials (NLMs) have
recently garnered significant interest for their abilities
to achieve wide bandwidth in vibration attenuation
and wave manipulation. However, NLMs proposed
have been predominantly theoretical and conceptual
due to nonlinearity being introduced through discrete
spring models rather than the practically achievable
components. To overcome this shortcoming, this
paper proposes an original integrated design strategy
leveraging a mono-slender beam configuration to
tailor nonlinear stiffness and form quasi-linear, hard-
ening and softening resonators. By adjusting only one
geometric parameter of the beam, transitions between
different nonlinear types can be realized. The nonlin-
ear behaviors of resonators are verified through static
force—displacement curves and frequency-amplitude
responses. Subsequently, a metamaterial beam com-
prising a linear host beam and periodically distributed
integrated hardening and softening nonlinear res-
onators is constructed. The dispersion relation for an
infinite-size beam is derived using the transfer matrix
method. The resulting complex band structure and
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nonlinear frequency response reveal that the bandgap
is amplitude-dependent and more importantly, broad-
ened due to the introduced nonlinearities. Further-
more, vibration attenuation in a finite NLM beam is
demonstrated in a broad nonlinear-dependent fre-
quency region which aligns well with the predicted
bandgap. The analysis of the power spectral density
within this region indicates that the attenuation is due
to frequency dissipation caused by the nonlinear
interaction between the resonators and the host beam.
This study presents a promising solution for advancing
the practical application of nonlinear metamaterials.

Keywords Nonlinear metamaterial - Wideband
attenuation - Hardening nonlinearity - Softening
nonlinearity - Integrated resonators

Abbreviations

A Output root-time-square amplitude of
the time domain

Ao Initial excitation amplitude

Ax,Ay End displacement in the x and y direction

0x,0y Normalized displacement in the x and y
direction

E.E, Young’s modulus of
hardening/softening beam and host
beam

S fysmz Normalized forces and moment in x and

y directions and around z-axis
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Fu()f(y) Force—deflection characteristic of the
hardening/softening nonlinear part

8> Pij» 9; ~ Nondimensional beam characteristic
coefficients

H Transfer matrix for the NLM beam

Iy Moment of inertia for the NLM beam

ki1,ks1 Linear stiffness coefficients

kpi kg Nonlinear stiffness coefficients

[ Beam length

I Lattice constant of the periodic structure

m]1 m]2 Mass parameters for the j-th unit cell in
the system

M, Moment in the z-direction

(0] Parameter capturing the beam’s tilt
influence

So Cross-sectional area of the beam

to Out-of-plane thickness of the beam

T Vibration transmission

Uy, Uy,0L End displacements in the x and y
directions and rotation angle

W (x) Mode shape function

Wi(xr) Mode function for the j-th unit cell

D(x) Shape function of the beam modes

w(x, 1) Transverse deflection of the beam

n Degree of nonlinearity

0 Initial angle between the beam’s
centerline and the vertical direction

v Flexural wavenumber

0o Density of the material for host beam

&noCs Damping ratios for hardening and
softening components

w Angular frequency

Q.0 Non-dimensional excitation frequencies

for hardening and softening components

1 Introduction

Research in science and engineering continuously
focuses on overcoming the mechanical limitations of
traditional materials and structures. Metamaterials, as
engineered micro-structured materials with extraordi-
nary properties, provide fresh insights and inspiration
toward attaining this aim. Over the past several
decades, metamaterials have been successfully
applied to various fields, including vibration attenu-
ation [1, 2], cloaking devices [3, 4], superlenses [35, 6],
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negative refraction [7], and directional waveguide
[8, 9].

Metamaterials also offer an effective way to
manipulate wave propagation and vibration through
their frequency bandgap, which controls wave prop-
agation. A notable subset of these metamaterials is
locally resonant (LR) metamaterials, designed to
suppress wave propagation in low-frequency ranges,
overcoming the limitations of Bragg scattering. Con-
sequently, this innovation has led to the development
of practical meta-beams [10, 11], meta-plates [12, 13],
and meta-surfaces [14] capable of suppressing elastic
wave and vibration propagation. The majority of
current designs of locally resonators exhibit linear
dynamic behavior, represented by mass-membrane
[15, 16], mass-rubber [17], mass-screws [18], beam-
type [19, 20], plate-type [21, 22] structures and
piezoelectric transducers [23, 24] with electrical
shunting.

However, due to their inherently linear resonance
mechanisms, their effective bandwidth is narrow. In
contrast, nonlinear dynamic characteristics not only
widen the bandwidth but also introduce new mecha-
nism, revealing interesting wave propagation phe-
nomena absent from linear metamaterials (LMs), such
as harmonic generations [25], dispersion modulation
[26, 27], amplitude-dependent bandgaps [28-30],
nonreciprocal wave propagation [31], and solitary
waves [32, 33].

Recent endeavors to analyze elastic wave propa-
gation in nonlinear metamaterials still utilize mass-
spring chain systems or continuous linear host struc-
ture with array of distributed 1-DOF virtual nonlinear
mass-spring absorbers. These studies emphasize the
importance of introducing nonlinearity in periodic
chains on wave propagation and attenuation, demon-
strating nonlinear modeling methods form a theoret-
ical perspective. For example, Narisetti et al. [34]
analyzed frequency-dispersion shifts in nonlinear
monoatomic chain with hardening and softening
nonlinear using perturbation method. Manktelow
et al. [35] used a multiple scales method to study the
wave-wave interactions in similar system. In [36], the
feasibility of employing a purely nonlinear mass-in
mass system as unit cells for broad bandwidth
metamaterial was explored. Yu et al. [37] numerically
analyzed the wave attenuation in a 1D metamaterial
with different nonlinear subunits. Fang et al. [38]
demonstrated that large amplitudes in strongly
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nonlinear triatomic chains could widen the bandgap.
Shen et al. [39] focused on 1D metamaterial beams
with embedded nonlinear resonators exhibiting soft-
ening or hardening cubic nonlinearity. Their study
demonstrated that these nonlinearities can signifi-
cantly enhance the bandgap width. Additionally, Shen
et al. [40] further investigated 2D metamaterial
honeycombs with periodically distributed nonlinear
resonators designed in a spider web-like configuration.
This research shows how the nonlinearities, whether
softening or hardening, can be optimized to signifi-
cantly enhance the bandgap width. Our previous work
[41] proposed an ultra-broad bandgap strategy induced
by combining hardening and softening nonlinearity in
a triatomic chain, showing that the bandgap could be
more than twice as wide as in the corresponding linear
case. Casalotti et al. [42] proposed a metamaterial
beam with periodic distributed nonlinear 1-DOF mass-
spring absorbers, significantly reducing vibration
associated with the lowest three vibration modes. Xu
et al. [43] combined nonlinearity and damping effects
in a metamaterial beam to achieve a broad bandgap.
Zhou et al. [44] designed a metamaterial beam with
embedded quasi-zero stiffness resonators, achieving a
wide low-frequency bandgap. Fang [45] studied a
vibro-impact resonator periodically attached to the
host beam and showed a novel regime called chaotic
band that can broaden the bandgap for low-frequency
waves. Xia et al. [46] focused on metamaterial beams
with bistable resonators, enhancing bandwidth
through amplitude-dependent nonlinear inter-well
oscillations. Wang et al. [47] proposed a multi-scale
material integrated into a nonlinear metamaterial
beam for whole-band vibration absorption across
low, medium, and high-frequency ranges by replacing
the mass components with composite mass bodies
filled with microscopic particles.

These endeavors have proven that, when compared
to LMs, nonlinearity provide new approaches to widen
band gaps and enrich wave propagation phenomena.
However, the introduction of nonlinear dynamic
behavior through theoretical discrete spring models
rather than real, physically realizable components
implies that nonlinear metamaterials remain largely
theoretical and conceptual. From a practical applica-
tion perspective, nonlinear metamaterials need to be
designed and fabricated from the resonator level to the
metamaterial level to enable one to realize the
proposed nonlinear dynamic characteristic practically.

Although several applications have been reported in
vibration energy harvesting [48, 49], vibration isola-
tion [50, 51], and shock absorption [52], where
nonlinearity is realized using combinations of linkages
[53], an X-shaped structure [54, 55], and magnets [56].
Moreover, Vakakis et al. [57] showed that through
purely geometric effects it is possible to achieve
transitions from hardening to softening nonlinearity in
an single degree of freedom oscillator composed of
multiple stiffness elements. Fan et al. [58] presented a
novel design of nonlinear magnetic mass-beam res-
onators capable of exhibiting hardening or softening
nonlinearities. Their work, which includes both the-
oretical and experimental investigations, reveals tun-
able band gaps. Furthermore, Shen et al. [59] proposed
metamaterial lattices embedded with piezoelectric
membrane-shaped nonlinear resonators, demonstrat-
ing the potential of such resonators to maximize the
bandgap width and adaptability. Li et al. [60] proposed
a nonlinear pendulum metamaterial capable of realiz-
ing an ultra-low-frequency field effect bandgap. These
designs of nonlinear metamaterials often involve
multiple mechanical components, which can result in
resonators that are less robust and compact, posing
significant challenges for their direct use in metama-
terials. To address these issues, only a few recent
research has been increasingly focusing on the devel-
opment of structurally integrated design approaches
for nonlinear resonators. Zhao et al. [61] introduced a
nonlinear damped metamaterial capable of achieving
wideband vibration attenuation by integrating inertia
amplifiers as nonlinear local resonators into a linear
host structure. Yu et al. [62] proposed nonlinear
metamaterial beam embedded with Kresling origami
configuration under large deformations and demon-
strate the emergence of unique frequency components
resulting from nonlinear coupling stiffness.

An integrated structural design strategy that allows
for the customization of nonlinear stiffness character-
istics holds significant promise for advancing the
practical use of nonlinear metamaterials. In this study,
we present a novel approach using a mono-slender
beam configuration that achieves the desired nonlinear
force—displacement behavior. The proposed beam
configuration is mechanically robust due to its
simplicity, as it comprises only a few beam compo-
nents. This design is also extremely compact, reliable,
and efficient in terms of minimal space and weight
constraints. By changing one geometric parameter
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only, different qualitative and quantitative shapes of
the force—displacement curve, and thus the nonlinear
stiffness, can be effectively realized. This includes
quasi-linear, weak hardening, Duffing hardening,
softening, quasi-zero, and bistable characteristics.
This work, therefore, provides a significant step
forward in the design of compact, robust, and efficient
nonlinear metamaterial systems.

Following this introduction and extending our
previous work [41] on broad bandgap creation through
combined hardening and softening nonlinearities in
triatomic mass-spring chains, Sect. 2 presents a con-
ceptual model of metamaterial beam with integrated
hardening and softening nonlinear resonators, accom-
panied with its Euler—Bernoulli beam-based mathe-
matical modelling. It further elucidates the transition
strategy from hardening to softening nonlinearity in a
mono-slender beam, providing designers with a pow-
erful tool to characterize both hardening and softening
nonlinearities. The proposed designs are theoretically
verified through static force—displacement curves and
dynamic amplitude-frequency response curves. Sec-
tion 3 investigates the propagation of flexural waves
in such a metamaterial beam using the transfer matrix
method based on the Floquet-Bloch theorem. Sec-
tion 4 numerically verifies the wideband vibration
attenuation due to hardening and softening nonlinear-
ity. Section 5 draws the conclusion of this work.

2 Modeling of the NLM beam
2.1 Conceptual model

Schematic of the proposed NLM beam is shown in
Fig. 1a. It comprises a host beam and periodically
attached hardening and softening resonators. The host
beam undergoes linear deformation, while nonlinear-
ity is introduced through the attached resonators. As
depicted in Fig. 1b, each resonator consists of both a
hardening and softening nonlinear component. The
hardening nonlinearity is achieved via the large
deformation of four parallel flat beams, while the
softening nonlinearity is generated from the large
deformation of four oblique beams. The mass m; is the
connecting structure (green frame) between the
beams, while the mass m, is orange center mass
connecting the four oblique beams.
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Consequently, the resonator unit can be modeled as
a nonlinear spring-mass resonator with two degrees of
freedom, i.e. with two spring-mass oscillators
arranged in series. The equivalent mechanical model
of the finite metamaterial beam, featuring an array of
periodically arranged nonlinear hardening and soften-
ing spring-mass resonators, is shown in Fig. lc. This
model can be utilized subsequently to analyze the
propagation of flexural waves in the NLM beam using
the transfer matrix method based on the Floquet-Bloch
theorem.

2.2 The hardening—softening transition
in the nonlinear response of a fixed-guided
beam

It has been demonstrated that the nonlinear response of
a beam significantly depends on its geometric config-
uration and the type of boundary condition being
imposed [63—-65]. Typically, the load—deflection char-
acteristic of a doubly clamped beam can be modeled as
a Duffing hardening spring. Mettler [66] first recog-
nized that for axially restrained beams, the dominant
nonlinearity arises from the axial stretching, with
curvature-induced nonlinearity being negligible.
Therefore, this work aims to develop an efficient
method to intentionally tune the axial stretching
through different initial angle configurations, which
provides a powerful tool for the designers to achieve
hardening or softening nonlinearities. Figure 2a illus-
trates the nonlinear deflections of a fixed-guided beam
at three initial angle configurations. The normalized
force—displacement relationship is expressed as
fi -9, wherefi = f;/max(f;) and y = y/I. By choos-
ing different initial angle 0 between the beam’s
centerline and the vertical direction, we show that it
is possible to tune the axial strength level and
therefore, achieve the hardening—softening transition
in the beam’s nonlinear deflection results. When the
angle 0 increases, a transition can be observed from
hardening nonlinearity to softening nonlinearity and
eventually turn to a bistable type with negative
stiffness. So, there are three cases considered: Case
(i), with 0<m/2, Case (ii), with 0 = n/2, and Case
(iii), with 0 > 7 /2. Specifically, Case (ii) is similar to
the half-symmetry case of the doubly clamped beam
and therefore, the force—displacement relationship
exhibits Duffing hardening nonlinearities, as seen in
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Fig. 1 a Schematic of a
finite metamaterial beam
with attached hardening and
softening nonlinear
resonators, b Hardening and
softening nonlinear
resonators as continuous
elements, ¢ Equivalent
mechanical model of the
finite metamaterial beam
with an array of periodic
hardening and softening
nonlinear spring-mass
resonators arranged in series

~ “*Hardening nonlinear

~ * Softening nonlinear
// my m,

(-1 cell Jhcell G+t cell

Fig. 2 a Three cases
showing different initial
angles 6 of a fixed-guided
beam and their
corresponding normalized
load—deflection schematic

diagrams. Case (i): 0<m/2, 0 <m/2 0 =m/2
Case (ii): 0 = n/2, Case
(iii): 0 > m/2;

b (a) Generalized flexible

beam
ot
0.5 1.0
4
(b)
Fy
N MZ*?;"?'“ E,
5 Ly Ay
k y
— Vs
l Ax
Fig. 2a. Case (i) is an initially downward-inclined in Case (ii) and therefore, mainly provides hardening
beam configuration, which produces less axial stretch- nonlinearity, but the hardening strength is weaker than
ing than that produced by the flat beam configuration Case (ii). In Case (iii), the axial stretching starts at a
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negative value (the beam is compressed initially) and
then changes to positive values, which is similar to a
buckled configuration that enables the realization of
softening nonlinearity. Thus, the ability to transition
between hardening and softening responses through
simple geometric adjustments (changing 0) in a fixed-
guided beam provides significant design flexibility for
targeting specific nonlinearities. Additionally, this
approach can be easily implemented in the fabrication
process.

The nonlinear static properties of various geometric
initial angle configurations can be derived using the
Beam-Constraint Model (BCM) [67]. The BCM has
been proven to accurately capture the large deflections
of flexible beams in compliant mechanisms. Addi-
tionally, the BCM is simple, parametric, and provides
closed-form solutions.

Figure 2b illustrates a generalized flexible beam in
its undeformed and deformed states with end-loads F,
Fy, M, and end displacements Ax, Ay, a. These loads
and displacements are normalized with respect to the
beam parameters and are given by the following
expressions:

_FRI FE M

fe=r =T gy

A
7(3x:%a5y Y

(1)

where [ represents the moment of inertia of the
rectangular section, and E and ¢ represent the Young’s
modulus and thickness of the beam, respectively. The
BCM characterizes the load—deflection relationships
of the beam through the following parametric and
closed-form equations:

|:fy:| _ {811 812] [“)] +f |:pll Plz} [”v:|
m; 821 82| % lpa po]l @

911 412 | | Uy
e
ik 4 9n ||

12 1 .
"y = fx 1 [u%oc} |:pll Plz] [”v:|
12 2 P21 Po || ®
di1 G2 | | Uy
—filuya - 3
f[y}{chl 4122}[0‘} 3)
In these equations, the coefficients g;, p; and g;
(ij = 1, 2) are nondimensional beam characteristic
coefficients listed in Table 1, as provided in the
referenced source [67].
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To more accurately capture the large deflection
behavior of the beam, each configuration shown in
Fig. 2a can be divided into several elements, with each
element modeled sequentially by the BCM. This
process, known as the Chain Beam-Constraint Model
(CBCM) [68], allows for the calculations of the force—
displacement nonlinear relations of the beam by
applying the BCM equations to each element and
incorporating the boundary constraints.

2.3 Design of the hardening nonlinear resonator

As depicted in Fig. 3a, the hardening nonlinear
component consists of four clamped flat beams. Due
to the structured symmetry of the resonator unit cell,
each of these beams can be modeled as Case (ii) in
Fig. 2a. Consequently, the load—deflection character-
istic of the hardening nonlinear part can be expressed
as:

fu(y) = 4f, (4)

where f, is obtained using the CBCM method
described in Sect. 2.1.

With the parameters [ = 40mm, t = 0.025 * [, beam
width b = 10mm, and Young’s modulus
E =194 x 10°Pa, the force—displacement curve
obtained via CBCM is plotted in Fig. 3b. A finite
element (FE) analysis was also conducted using the
commercial FE software ANSYS. In this analysis, the
beam part was modeled using the Beam 189 element
type, while the remaining part was modeled using the
Plane 182 element with a large modulus of elasticity to
simulate a rigid body mass. The force—displacement
curves obtained from the FE analysis are shown as a
dashed line in Fig. 3b, demonstrating good agreement
with the CBCM results.

The force—displacement characteristic can be mod-
eled by a hardening Duffing spring as:
fn=kny, + kh3y2. The dimensionless displacement
is defined asy, = y,//. The Duffing fitting result is
plotted as hollow circles in Fig. 3b. We notice that the
elastic force can be divided into two components: a
linear term due to the bending and a nonlinear term
due to the axial stretching. This division has been
reasonably demonstrated in the design of hardening
Duffing energy harvesters [65]. Therefore, by varying
the ratio of bending strain to stretching strain, the
nonlinear term can be intentionally designed. The



Wideband vibration attenuation of a metamaterial beam

Table 1 The nondimensional characteristic coefficients of the BCM matrices

811 812 = 821 822 Pu P12 = P2

P2 91 912 = 921 92

12 -6 4 6/5 — 1/10

2/15 — 1/700 1/1400 — 11/6300

Fig. 3 a Hardening (a)
nonlinear resonator,

b Hardening nonlinear
force—displacement

verification case; ¢ The

influence of slenderness

ratio and excitation

amplitude on the degree of

nonlinearity, d Nonlinear 4 Yh
dynamic response of the

equivalent dynamic model

of resonator cell with

different slenderness ratios

slenderness ratio of the beam is a critical parameter
affecting this variation of the ratio of the bending
strain and stretching strain and therefore, further
affects the degree of nonlinearity. The slenderness
ratio is defined as = #/1. The degree of nonlinearity 7 is
defined as the ratio of the nonlinear stiffness term to
the linear stiffness term. For a hardening Duffing

nonlinear system, this parameter # is defined as: , =

3k,

2
ﬁ)” where 7, > 0 indicates stiffness hardening and

1, <0 indicates stiffness softening. Figure 3c illus-
trates the effect of the slenderness ratio on the degree
of nonlinearity. First, it is evident that the degree of
nonlinearity increases as the slenderness ratio
decreases for the same level of excitation. Conse-
quently, the corresponding backbone curve and the
amplitude-frequency branches bent downwards, yield-
ing the lower amplitude for smaller slenderness ratios.
Theoretically, for a quasi-zero thickness beam

k 20 = CBCM 7
= = «FEM
O Duffing Fitting

(A = 0), one has that the linear stiffnessk;,; ~ 0. In
this scenario, the static characteristic resembles a
tensioned wire, where only axial stretching deforma-
tion is considered, not bending deformation.

To quantify the design hardening nonlinearity, the
hardening nonlinear component shown in Fig. 3a can
be simplified to a single degree of freedom Duffing
oscillator under base excitation. The multiple scales
method [69] was used to solve the frequency response
curves of the hardening nonlinear resonator. The
derivation procedure according to the standard mul-
tiple scales method is detailed in Appendix Al. In
Fig. 3d, we illustrate the effect of varying the
slenderness ratio A on the frequency hardening with
a constant excitation amplitude y,, = 0.01. When the
slenderness ratio A increases, a noticeable reduction in
the leaning tendency toward higher frequencies can be
found, indicating that the hardening nonlinearity
decreases. Conversely, when the slenderness ratio A
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decreases, the hardening nonlinearity increases. This
relationship paves the way for achieving the des-
ignable nonlinearity at small-amplitude vibration via
the beam’s slenderness ratio tuning.

2.4 Design of the softening nonlinear resonator

As analyzed in Sect. 2.1, introducing a buckled
configuration can lead to the stiffness softening. Thus,
by adjusting the initial configuration angle of the
beam, we show that it is possible to achieve the
softening response. The equivalent softening spring
design requires symmetrical reciprocating motion at
the equilibrium position, implying a symmetrical
static response. Therefore, a symmetrically structural
design is essential. As shown in Fig. 4a, the softening
nonlinear component consists of a pair of beams from
Case (i) and a pair of beams from Case (iii), resulting
in a symmetrical configuration. The load—deflection
characteristic of the softening nonlinear part is
expressed as:

fs) =2(f1 +/3) (5)

where f| and f3 can be obtained using the CBCM
method described in Sect. 2.1.

Fig. 4 a Softening

, (a)
nonlinear resonator, b
Softening nonlinear force—
displacement verification
case; ¢ The influence of the X4
parameter Q and excitation 1
amplitude on the degree of 4
nonlinearity, d Nonlinear 0
dynamic response of the
equivalent dynamic model
of resonator cell with
different Q
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With the parameterst = 0.005 *x ,0 = 93", and
other parameters being consistent with those of the
hardening part, the corresponding force—displacement
curve obtained by CBCM is plotted in Fig. 4b. The
slope of the curve decreases, indicating softening
stiffness. Additionally, the force—displacement curve
obtained from FEA and polynomial fitting results are
also plotted in Fig. 4b, showing a good agreement.
Different from the hardening Duffing fitting, the
softening force—displacement characteristic is fitting
by the polynomials as fi = > i ksy,' (n=8). The
dimensionless displacement is defined asy; = y,/I. To
gain deeper understanding of the full potential of the
initial configuration angle design on the resulting
nonlinear type, we further consider the combined
influence of the slenderness ratio and the initial
configuration angle on the corresponding nonlinear

response. Hence, we introduce the parameter of

interest Q = ‘C(juse‘, to quantitatively capture this

influence. It is worth noting that Q represents the ratio
of the span height of the oblique beam to the thickness
of the beam. A higher Q indicates a greater tilt of the
beam. Similar to the hardening nonlinear case, the
degree of nonlinearity # is defined as the ratio of the
nonlinear stiffness term to the linear stiffness term,

(b)
40
7
k 20+ < 1
=
S -
S~ 2
20+ 5 — FEM i
= = «CBCM
¢ © Polynomial fitting
-40 -
-0.01 0.00 0.01
(d) yS
0.03 T
0.02F.._ 1
oY L ' —Q=2
0.01} — o
— Q=8
0.00
1 2 3
Qs
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n ikoy i1
_ Zi:Zl siVs
ks

means hardening stiffness, while 7, <0 means soften-
ing stiffness. As shown in Fig. 4c, as Q increases, an
apparent transition from hardening to softening effects
is seen. More explicitly, to achieve a softening
nonlinear type, Q must exceed a certain threshold.
Otherwise, the system remains hardening nonlinear.
Furthermore, we investigate this transition by simpli-
fying the softening part in Fig. 4a to an equivalent
single degree of freedom oscillator. The equivalent
spring is determined by the fitting polynomial men-
tioned earlier. The fundamental mode frequency
response for this polynomial nonlinear type can be
solved using the multiple scales method [69]. The
derivation procedure is detailed in Appendix A2. As
illustrated in Fig. 4d. By varying the parameter Q and
with a constant excitation amplitudey,, = 0.001, the
transition from nonlinear hardening to softening is
clearly depicted. Specifically, as Q changes from Q =
2 to Q = 4, the hardening nonlinearity weakens to an
approximately linear type of the response. As Q
increases from Q = 4 to Q = 8, the softening nonlin-
earity becomes more apparent.

asy . It is also noteworthy that x, > 0

3 Propagation of flexural wave in NLM beam
3.1 Dispersion relation by transfer matrix method

In this section, we study the dispersion of the NLM
beam with nonlinear resonators. The host beam is
modeled using the Euler—Bernoulli beam assumption,
governed by

o*w(x, 1) O*w(x, 1)
ox* or?

where w is the transverse deflection of the beam, Ej,

Iy, pg, So are the elastic modulus, moment of inertia,

density, and cross-section area, respectively.
Assuming the transverse deflection of the beam as

Eoly + poSo =0 (6)

w(x) = W(x)e" (7)

where o is the angular frequency and W (x) = A®(x)"
is the mode shape function, with:

A={A B C D} 8)

®(x) = { cos(vx) sinh(vx) }

©)

where A, B, C, D are unknown coefficients, v is the
flexural wavenumber and the dispersion relation of the

bare beam without resonators can be expressed as

4 _ poSo
" Eolo

Jle <x<(j+ 1)l. and [ is the lattice constant, the
mode function can be written as W;(xr) = A;®(xr)",
where A;={4; B; C; D }.

The governing equation of motion for the resonator
can be written down as follows

sin(vx)  cosh(vx)

v @?. In the j'™ unit cell where x/ = x — jl, and

miyi + kni (v} —w(x;, 1)) + kna(y; — w(xj, 1)’
+ ksl()’} - y]z) + zizzksi(y} - y]g):
=0 (10)

mis} + ka7 =) + Y k07 ) =0 (11)

We consider only fundamental wave propagation
and, thus, it is assumed that

v = (W;(0) + Y1)e” + cc. (12)

yi = (W;(0) + Y1 + Yp)e'” + cc. (13)

where Y is the motion amplitude of mass m; relative
to the connection point, and Y, is the motion
amplitude of mass m, relative to m;. By substituting
Egs. (12-13) into Egs. (10-11), and using the multiple
scales method to this polynomial nonlinear system, we
obtain

(14)

— 20 (Wj(0) + Yy + Y2) + kyYs — 5/6k5Y3
+3/4kiYs =0
(15)

The derivation procedure is detailed in Appendix
A3. These two equations can be used to obtain the
amplitudes Y; and Y».

Considering the continuities of the displacement,
slope, bending moment and shear force at the attach-
ing point of the resonator, and employing the Floquet-
Bloch theorem A; = €!9A;_; and the transfer matrix
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method, the dispersion relation of the NLM beam can
be derived as

IGT'H—€"I| =0 (16)

where I is the identity matrix, ¢ is the bending wave
vector, and H and G from Eq. (16) are defined by

cos(vl,) sin(vl,) cosh(vl,) sinh(vl,)
He —vsin(vl.)  vcos(vi.) vsinh(vl;)  vcosh(vl.)
| =v*cos(vl,) —v*sin(vl)  v’cosh(vl.)  vsinh(vl.)
ER3sin(vl,) —EN3cos(vl.) EIsinh(vl.) EN’cosh(vl.)
(17)
1 0 1 0
0 v 0 v
G = —V2 0 V2 0 (18)
gn —ED gy EDY
where
—(mj!af(Wj(O) + Y1) +mia? (W;(0) + Y, + Y2)>
841 = 843 =

W;(0)
(19)

Strictly speaking, the Floquet-Bloch theorem can-
not be applied to nonlinear periodic systems, and a
recent review [70] of nonlinear metamaterials pro-
vides a detailed discussion for the applicability of
Bloch’s theorem. In our study, the nonlinearity is
localized within the constitutive properties of the local
resonators. Perturbation techniques allow the nonlin-
ear field equations to be approximated by a hierarchy
of linear equations, enabling a reasonable application
of Floquet-Bloch conditions for analyzing dispersion
features in nonlinear periodic systems.

For a given frequency, the wave vector solution can
be obtained from the dispersion relation. In the special
case where kp; = ky; = 0,(i > 2), Eq. (16) degenerates
into the linear dispersion relation.

3.2 The frequency responses and bandgap
structure

The effects of nonlinearity of the attached resonator
unit on the frequency band structure, particularly on
the widths of the bang gaps, are investigated as
illustrated in Fig. 5. Here, the parameters are set as
follows: the lattice constant /. = 60mm, Young mod-
ulus Eg = 70 x 10°Pa, the density p, = 2700kg/1n3,
the thickness of the beam ¢y = 2mm, the out-of-plane
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thickness by = 128mm. The geometric parameters of
the hardening beam and the softening beam are the
same as those in Figs. 3b and 4b respectively. The
mass  parameters m; = 0.385 x 10"'kg  and
my = 0.086 x 10~ 'kg.

First, the linear case was considered as having the
same constant linear spring stiffness coefficients as the
attached resonator. As shown in Fig. Sa-b, two
resonant modes are identified in the frequency
response of the attached resonator. Furthermore, each
resonant mode frequency generates a bandgap, as
predicted by both the imaginary and real parts in
Fig. S5c—d.

For the nonlinear cases, the effects of the excitation
amplitude are examined. It is observed that in the
amplitude-frequency curve of mass m; shown in
Fig. 5a, there is the antiresonance between two
distinctive resonances, while in the amplitude-fre-
quency curve of mass m, shown in Fig. 5b, there is a
well between them, which descends and flattens
toward 0 dB. The first-resonance branches bend
toward lower frequencies, corresponding to the soft-
ening behaviour, while the second-resonance branches
exhibit multiple bending: first towards lower frequen-
cies and then towards higher frequency, implying the
mixed softening-hardening type of the behaviour [71].
The degree of this bending increases with the excita-
tion amplitude.

The complex bandgap structure is particularly
intriguing, as depicted in Fig. 5c—d. For real parts,
similar to the amplitude-frequency curves, frequency-
real-wavevector curves lean toward lower or higher
frequencies, resulting in multiple values of real
wavevector corresponding to certain frequencies. It
is noted that the actual possible frequency-wavevector
depends on the stable amplitude-frequency responses.
The imaginary part can directly characterize the wave
attenuation characteristics and the bandgap region, so
it can more clearly reflect the effects of nonlinear and
excitation amplitude on the bandgap. In Fig. 5c, d, the
grey shaded area represents the bandgap region for
linear case. For nonlinear case, the high frequency
branch corresponding to the second band gap bends
toward lower frequencies, causing the second bandgap
to extend to lower frequencies and approach the first
bandgap. Explicitly, as the excitation amplitude
increases, this extension becomes more apparent.
Additionally, the low frequency branch corresponding
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fFig- 5a AmPlimde'f — Linear Ap=0001 —o—45=001 == Ag=002
requency response of mass
m, for different excitation (a) Rarskegm (b)
amplitudes, b Amplitude- 80 . T . . T 80 T T . .
frequency response of mass I
my for different excitation /8 60 ’B 60
amplitudes, ¢ Real part of $ 40 i 40
bandgap structure for S s
different excitation < 20 < 20
amplitudes. d Imaginary %D ol %D 0
part of bandgap structure for =) =)
different excitation N -20 N -20 -
amplitUdeS 40 1 1 1 1 1 o 1 1 1 1 1
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Frequency (Hz) Frequency (Hz)
c d
( ) 3 T T T T T ( ) 1 -O T L
P o L. L]
/l-:\ i 0.8 f
= o S 06} \
o S ‘
= 004}
S 11 £
~ ._E. 0.2
0.0

0
0

Frequency (Hz)

100 200 300 400 500 600

0 100 200 300 400 500 600

Frequency (Hz)

to the first band gap bends toward a zero-frequency
value, which seem to reflect a bandgap starting at zero
frequency. However, we point out that, essentially,
this apparent zero-frequency bandgap is misleading,
as the new emerging imaginary branch starts from zero
frequency results from an unstable amplitude-fre-
quency curve. This is further evident by numerical
calculations of wave propagation in NLM beam in the
following Sect. 4.

4 Numerical verifications

To further validate our analytical results, FE simula-
tions were conducted. As illustrated in Fig. 6a, an
NLM beam with a finite length consisting of 8
resonator units with free-free boundary condition
was modeled in ANSYS. The relevant geometry,
material and mass parameters are consistent with those
in Sect. 3.2. An external sinusoidal excitation w;, =
Apsinwt was applied on the left-band side of the beam.
The simulation utilized 8-node Solid185 element type,
and a mesh convergence analysis was performed out to

ensure the adequate numerical accuracy. The mesh
details of the attached resonator are shown in Fig. 6b.

A time-domain nonlinear transient analysis was
conducted to obtain the time transient displacement
for the nonlinear case. By maintaining constant
frequency and amplitude of excitation for 100 periods,
the transient oscillations dissipate, resulting in steady-
stable periodic motion. The time step was fixed at 1/20
of the excitation period. Therefore, 20,000 calculation
steps are required for each excitation frequency. This
made the computation of a single transmissibility
curve extremely time-consuming. To reduce the
calculation time, as shown in Fig. 6¢, the beam
structure was modeled using the Beam189 element
type, and the corresponding mass body was modeled
by the Mass21 element type. The remaining connec-
tion parts were treated as rigid connection and
modeled using node coupling technology in ANSYS.
Specifically, the node-coupled sets for connections
were defined as follows: CP1 for the main beam-to-
hardening beam, CP2 for the hardening beam-to-m;-
to-softening beam, CP3 for the softening beam-to-m,.
This beam element-dominated modeling method

@ Springer



J. Zhao et al.

Fig. 6 a FE model of finite
length NLM beam, b Mesh
details of attached resonator
using Solid185 element
type, ¢ Simplified FE model
of resonator using Beam189
element type and node
coupling technique

significantly reduced the number of solid mesh
divisions, thus significantly decreasing the calculation
time.

We further compared the first two Y-direction
vibration modes of the additional resonator modeled
with Solid185 element and Beam189 element respec-
tively. As shown in Fig. 7, the deformation modes of
the resonator in the first two modes of the two
modeling methods are consistent. The motion of
and my, is in phase at the 1st mode and antiphase at 2nd
mode. Moreover, the modal frequency errors between
the two modeling methods are minimal, as listed in
Table 2, which also demonstrates the effectiveness of
the beam element-dominated modeling method.

Based on the above time-domain nonlinear tran-
sient behaviour of the beam element-dominated FE

(a)

Fig. 7 a 1st mode shape of the resonator modeled by Solid185,
b 2nd mode shape of the resonator modeled by Solid185, ¢ 1st
mode shape of the resonator modeled by Beam189, d 2nd mode

@ Springer

(c)

i - Mass21 |
e

model, the vibration transmission is defined as
T = 20log|A/Ao|, where A is the output average
amplitude determined by the root-time-square ampli-
tude of the time domain at a specifical frequency. For
comparison, a frequency-domain harmonic response
analysis was performed to predict the transmissibility
characteristics for the linear case.

4.1 Wave transmissibility and verification
of the band structures

As shown in Fig. 8a, we compared the wave trans-
missibility for the linear and nonlinear systems under
different excitation amplitudes and the following
remarks can be made. First, for the linear case, the
band gaps presented in the transmissibility align well

(b)

shape of the resonator modeled by Beam189. Note that to clearly
show the modal shapes, the modal shapes are scaled up, so there
is no actual penetrate or contact constraint in the FE simulations
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with the predicted one from the imaginary part of the
wave vector. Second, for a small excitation amplitude,
the nonlinear effect is negligible. Consequently, the
comparison between the linear case and the small
excitation amplitude shows good agreement. The
minor differences observed are primarily due to the
use of a linear frequency domain analysis for the linear
case and the nonlinear transient analysis for the small

Table 2 Comparison of modal frequency between two mod-
eling methods

Modeling by Modeling by Error
Solid185 Beam189
1st mode 164.0 159.3 2.9%
2nd mode 4159 409.0 1.6%
Fig. 8 a The wave (a)
transmissibility for the —Linear

Ag = 0.001

excitation amplitude case. Finally, and more impor-
tantly, as the excitation amplitude increases, the
resonant peak amplitudes are significantly suppressed
before the original second linear band gap regions.
Additionally, the attenuation region gradually expands
to lower frequencies. Specifically, for Ay = 0.01, the
three resonant peaks before the second band gap are
suppressed. For Ag = 0.02, the four resonant peaks
before the second band gap are suppressed. Notably,
for Ap =0.03, the resonant peaks between two
original linear bandgaps are suppressed. As a result,
the two bandgaps are merged through the nonlinear-
induced attenuation region. with a-5 dB threshold, the
width of this nonlinear-induced attenuation region is
340% of the original second linear bandgap. More-
over, the frequency boundary of this attenuation
region matches well with the predictions from the
imaginary part in Fig. 5d.

—— Ay =001 =o=Ay =002 =o=A,=0.03
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Figure 8b shows the comparison of normalized

displacement A=A /Ao at 325 Hz between the linear
case and the nonlinear case with Ag = 0.03, where
significant attenuation is observed compared to the
linear case. The corresponding phase diagrams shown
in Fig. 8c—d also reveals the linear periodic oscillation
and complex nonlinear aperiodic oscillation modes.
To further understand the mechanism of this attenu-
ation region, we investigated the influence of the
excitation amplitude on the power spectral density of
the output response of the measurement point. As
shown in Fig. 8e, at 325 Hz, when Ay — 0, we
observe a linear resonance with energy localized at
the driving frequency. As A; increases beyond a
critical value (Ao.), energy is no longer localized
solely at the driving frequency but disperses over a
broad frequency domain. Obviously, a partial enlarge-
ment of Fig. 8e reveals another branch of power
spectral localization below the driving frequency.

5 Conclusion

This work has been inspired by the fact that the use of
nonlinear oscillators in nonlinear metamaterials has
been proven to be beneficial for achieving wide
bandwidth, but this has been predominantly theoret-
ically and conceptually done with the nonlinearity
introduced via discrete spring models, which are not
thus convenient for practical realization. To overcome
this shortcoming, this study has provided an innova-
tive design of a metastructure involving a mono-
slender beam with integrated resonators whose stiff-
ness can be customized to be quasi-linear, hardening,
softening or bistable. The additional benefit of the
design proposed lies in the fact that a desirable form of
nonlinearity in the resonator can be achieved by
adjusting only one geometric parameter of the res-
onator. Thus, each resonator has been constructed to
correspond to a serial combination of two nonlinear
oscillators, the stiffness of the first one is tailored to be
hardening, while the second one is softening. Physical
realizations of these oscillators correspond to two
block masses attached symmetrically to four beams. In
the hardening oscillators, the beams are clamped and
initially flat, while their slenderness ratio can be
appropriately chosen to achieve a desirable level
(strength) of nonlinearity. In the softening oscillators,

@ Springer

all four beams are initially oblique, and their config-
uration has two orthogonal axes of symmetry. One pair
of them provides negative stiffness, while the other
pair provides approximately linear stiffness; when
combined, they yield softening stiffness.

In the next step, the dispersion relation for such
infinite-size metastructure has been determined ana-
Iytically by using the transfer matrix method. The
resulting band structure has been found to be ampli-
tude-dependent but widened with respect to the linear
counterpart. Additionally, the finite element method
has been used to investigate a finite nonlinear metas-
tructure, showing that the nonlinear-induced attenua-
tion region aligns with the predicted bandgap, which is
more than three times as wide as the original linear
second bandgap. The power spectral density analysis
has confirmed that the attenuation is the result of
dissipation caused by the interaction between the
nonlinear resonators and the host beam.
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Appendix Al

For the hardening nonlinear component, the equation
of the equivalent single degree of freedom oscillator
with a mass mj, a linear restoring force kj;y and a
nonlinear restoring force kh3y3 can be written as
follows

miyy, + ¥y + kniy, + kizyy = —miywcos(wr)
(AL1)

where c, y,g, 0, t are the viscous damping, excitation
amplitude, excitation frequency and time, respec-
tively. By introducing the nondimensional variables

wp = \kn /mi, T = opt, Qy = /oy, &=
c/@mion), 3y = yu/L Ino = Yo/l 05 = ksl [k,
we have the following non-dimensional Duffing
equation

Vi 42030 + Iy + 5135’\;,3 = _)A’h()QhZCOS(QhT)
(A1.2)

where the prime symbol “/” represents the nondi-
mensional time derivative d/dz.

For weak forcing, damping, nonlinearity, the fre-
quency response equation for this system with cubic
Duffing nonlinearity can be determined using the
multiple scales method [61]

- 30\ -
5l (1- 9+ Joalsi? )+ 2l
—~ 2
= (yhOQi)
The multiple time scales expansion is carried out to
second order. The detailed parameters of Fig. 3d are
specified as follows: for A = 0.02: a3 = 846.1; for

A=0.04: o3 = 3476 and for case A= 0.06:
o3 = 177.0. The damping ratio {; = 0.02.

(A1.3)

Appendix A2

Similarly, for the softening nonlinear component, the
equation of the motion of the equivalent single degree
of freedom oscillator with a mass m, a linear restoring
force  kgqy, a nonlinear restoring  force
Zfzzksixi(n = 8) can be written as follows

- 3 e\ -
5 (1= 9+ 3l + Coouls)?
~ 2
:(yhogi)

By introducing the nondimensional variables

(A2.1)

w5 = kg1 /ma, T = 4, Q, = w/w;,
C.s‘ = C/(zmlws)’ 5]\s = ys/l’ ys() = yh()/l’

o :ks,-l(i’l) /ks1, the following non-dimensional
equation is.

5}\3” + 2555}\5, + 5)\.9 + Z?:zaiy\si = —yXOQSZCOS(QX‘L')
(A2.2)

For weak forcing, damping, nonlinearity, the fre-
quency response equation for this system with poly-
nomial Duffing nonlinearity can be determined using
the multiple scales method [61]

5 3 ?
~ 12 2 ~ 2 ~ 2
ys| (1 - Qs _ga§|y5| +Za3|ys| )

+ (2L [5,])?

~ 2

= (ysOQ%)

Higher-order nonlinear terms are approximately
ignored in the frequency response due to the second-
order multiple time scales expansion. The detailed
parameters of Fig. 4d are specified as follows: for
0=2 op=-78x10"" and a3 =4695.3; for
0=4, o0,=-96x10"" and a3 =39.8; for
0=6, op=—48x 107" and a3 = —3482.2; for
case 0 =6: oy = —8.6 x 107'* and o3 = —7926.5;
The damping ratio {;, = 0.02.

(A2.3)

Appendix A3

We begin by introducing multiple time scales explic-
itly as T, =¢"t for n=0,1,2. Consequently, the
derivative with respect to T becomes an expansion in
terms of the partial derivatives with respect to T,:

d 0 0

0
2 _ 2
= o+ — =D, +¢eD, + D
& ot far, Tt an t e+ e,

(A3.1)

We consider the following dimensionless equation
of motion with quadratic and cubic nonlinearities:

Y4+ +ay +az5° =0 (A3.2)
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The solution to Eq. (A3.2) can be expressed as a
series expansion:

y(t,8) = ¥o(To, T1,T2) + &y, (To, T1, T>)

+ 823)\2(T07 Tla TZ) (A33)

Substituting Eq. (A3.3) into Eq. (A3.2) and match-
ing the coefficients of powers of ¢ we obtain a
hierarchy of sub-problems:

0(£%) : D§yy + 5, =0 (A3.4)
O(e') : DIy, + 3, = —2DoD13, — ax¥; (A3.5)
O(&) : Dy + ¥,

—D} — 2a2¥0¥, — asy;

The solution to Eq. (A3.4) can be conveniently
written as:

yO = YQ(T] ) Tz)CiTO + cc. (A37)

where Y is a complex amplitude, and cc. denotes the
complex conjugate. Substituting Eq. (A3.7) into
Eq. (A3.5), removing secular terms, and set
Yo = Yo(T>), the solution of Eq. (A3.5) is expressed
as:

~ - 1 ;

y, = a (—YOYO + ngez’To) + cc. (A3.8)
Substituting Eq. (A3.7) and Eq. (A3.8) into

Eq. (A3.6) and again eliminating secular terms, we

derive the non-dimensional frequency response,
namely, the frequency modulation equation:

9(13 + 10a§

Q=1
+ 12

Y} (A3.9)

we derive the non-dimensional frequency response,
namely, the frequency modulation equation:

22 9a3+10a2 -~

Substituting the harmonic solution y = Y5e™* + cc
Into Eq. (A3.10), we obtain:

9a; — 10a3
12

(A3.10)

—Q*Y + Yo + Y3 =0 (A3.11)

Following the procedure above using Eq. (A3.11)
for the equivalent system of Eq. (A3.2), we can

@ Springer

similarly use the following system of equations as the
agent system for Eqgs. (10-11):

—mi* (W;(0) + Y1) + kY1 — kY2 + 3/4kp3 Y7
+ 3/dkaY3 — 5/6k5 Y3
=0

(A3.12)

—m;w* (W;(0) + Yy + Y2) + kg Y2 + 3/4ka Y3
—5/6k%,Y3

(A3.13)

Combining Eqgs. (A3.12) and (A3.12), we derive
Egs. (14-15).
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