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Broadening bandgaps

In a multi-resonant piezoelectric
metamaterial plate via bandgap
merging phenomena

Yuhao Li, Zhiyuan Liu, Hao Zhou, KaijunYi* & Rui Zhu**

Locally resonant metamaterials usually have narrow bandgaps, which significantly limits their
applications in realistic engineering environments. In this paper, an optimization method based on
the genetic algorithm is proposed to broaden bandgaps in multi-resonant piezoelectric metamaterial
through the merging of multiple separated bandgaps. Using the effective medium theory, the
equivalent bending stiffness and dispersion relationship of a metamaterial plate are first obtained.
Then, the criteria for determining the bandgap ranges for the two cases with and without damping are
provided and analyzed. Furthermore, based on the bandgap merging phenomena, an optimization
method for widening the bandgap is proposed based on the genetic algorithm. By investigating

the bandgap widening effects in cases without and with damping, it is found that, when there is no
damping, the bandgap can only be slightly widened; while after introducing damping into the transfer
functions, the bandgap can be significantly widened by more than 200%. The bandgap widening
effects are verified by comparing with finite element simulation results.
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Plates and shells are widely used as load-bearing structures in various equipment like carrier rockets and under-
water vessels. These structures not only need to meet static the load requirements but also require satisfying
vibration and acoustic performance. Since structural vibration and the resulting noise radiation are closely
related to elastic wave propagation in the structure, isolating the propagation of elastic waves from the source
to the target parts of the structure proves to be an effective approach for vibration reduction and noise control.
The concept of elastic metamaterials with local resonators provides a new approach to deal with elastic waves.
Elastic metamaterials can generate low-frequency bandgaps with subwavelength units, which effectively block
the propagation of elastic waves within the desired bandgap frequency range. However, most metamaterials have
narrow bandgaps, severely limiting the practical application of elastic metamaterials in real-world engineering
applications.

Various approaches have been proposed to broaden the frequency range of metamaterials’ bandgaps. Among
them, the approach of adding multiple resonators to rod', beam?, and plate® structures is often utilized. By
increasing the number of carefully tuned resonators in the unit cell, a wider bandgap can be achieved in the
multi-resonant metamaterial®. For instance, Zhu et al.? introduced an elastic metamaterial beam with multiple
embedded local resonators to achieve broadband vibration suppression without sacrificing its load-bearing
capacity. Additionally, widening the bandgap can be achieved through the design of gradient structures®. For
example, Lewinska et al.® proposed and investigated a gradient acoustic metamaterial where a distribution of
local resonators with different characteristics (mass and stiffness) was introduced. The results indicate that by
properly choosing the mass and stiffness of the distributed resonant unit cells, the frequency attenuation range
can be effectively expanded. Furthermore, broad coupling bandgaps can be formed by coupling localized reso-
nance bandgaps with Bragg bandgaps or multiple bandgaps. For instance, Xiao et al.” proposed a simple locally
resonant continuous elastic system composed of a taut uniform string and periodically connected spring-mass
resonators, clearly demonstrating the coexistence of two types of bandgaps in the system, namely Bragg bandgaps
and resonance bandgaps, and the coupling of the two bandgaps generates an ultra-wide coupling bandgap. In the
field of metasurfaces, Tsilipakos et al.® proposed a achromatic gradient metasurfaces that achieves broadband
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and dispersionless operation. Tsilipakos et al.” also proposed a practical, achromatic microwave metasurface for
delaying broadband pulses in reflection by fitting five sharply resonant meta-atoms in a subwavelength unit cell,
achieving a total bandwidth nearly linearly proportional to the number of resonances.

Piezoelectric materials have also been introduced into the designs of locally resonant metamaterials for their
reconfigurability'*"3. Airoldi and Ruzzene'® found in their research that the equivalent stiffness of a piezoelec-
tric beam shunted with resonant circuits exhibits resonance characteristics near the resonance frequency. They
proposed that such piezoelectric beams can be regarded as metamaterials, namely piezoelectric metamaterials.
Sugino et al.'! studied one-dimensional locally resonant piezoelectric structures with segmented electrodes under
transverse vibration and found that the formation of bandgaps is related to the resonance frequency in the shunt-
ing circuit and the electromechanical coupling coeflicient of the piezoelectric patches. Yi et al.!> demonstrated
through the analysis of the dynamic properties of piezoelectric metamaterial beams that bandgaps are generated
by negative bending stiffness. Similar to passive locally resonant metamaterials, piezoelectric metamaterials also
need to address the issue of bandgap widening. For example, Zhu et al.'* experimentally investigated the dynamic
behavior of adaptive piezoelectric metamaterials with negative capacitance and obtained adjustable bandgaps.
Sugino et al.'”® proposed a hybrid unit structure made of piezoelectric laminates with segmented electrode pairs
and additional mechanical resonators, which can simultaneously exhibit locally resonant bandgaps based on
dynamic mass and stiffness. The combination of these two types of bandgaps enhances the overall bandgap. Jian
et al.’® introduced a novel gradient piezoelectric metamaterial beam with parallel resonant circuits, employing
a graded strategy for electrode pairs’ spatial variation. With proper selection of resistors, the gradient piezo-
electric metamaterial beam achieved theoretically the widest attenuation region. Celli et al.'” proposed that the
heterogeneity of resonator properties and the interaction between spatial disorder could lead to the widening
of the systemss filtering effect, namely widening of the bandgaps, compared to more traditional concepts of spa-
tially ordered rainbow materials. In order to enhance the practical performance of metamaterials, reduce the
required number of unit cells, and additional mass, Airoldi and Ruzzene'® achieved multi-frequency resonance
in piezoelectric metamaterials beams and simultaneously generated multiple bandgaps by introducing multi-
frequency resonant circuits. Furthermore, Yi et al.'* designed a transfer function to achieve multi-resonance in
digital circuits, realizing multi-resonant piezoelectric metamaterials based on self-inductive sensing piezoelectric
patches and digital circuits. However, approaches for widening bandgaps in piezoelectric metamaterials are still
somewhat limited.

Optimization methods have brought an avenue for the widening of the metamaterial’s bandgap. Common
optimization schemes include topological optimization and parameter optimization?*~*°. Regarding passive elastic
metamaterials, there is a considerable amount of research, for instance, Wu et al.” proposed a genetic algorithm
approach to design non-periodic unit structures, achieving broadband wave attenuation. Meng et al.>* estab-
lished a theoretical model for connecting multiple local resonance bandgaps in two-phase composite materials
with damping and obtained ultra-wide bandgaps through the proposed optimization procedure. Chen et al.**
employed an enhanced genetic algorithm to design square lattice structures, achieving wide and multiple band-
gaps in the low-frequency range through optimized filler material distribution. For piezoelectric metamaterial,
Jian et al.”® introduced a non-uniform piezoelectric metamaterial beam, where the shunting circuit parameters
were optimized using an adaptive genetic algorithm to tailor the vibration attenuation region. Gao and Wang?®®
proposed a genetic algorithm to optimize the circuit parameters of LR parallel circuits in each unit of the metama-
terial beam, which can couple multiple local resonance bandgaps to Bragg bandgaps to widen the frequency range
of vibration suppression. In general, it remains an unresolved issue to widen bandgaps and achieve broadband
vibration suppression in piezoelectric metamaterial plate through optimization methods.

This paper proposes a method to widen the bandgaps of multi-resonant piezoelectric metamaterials based on
frequency merging phenomena. Firstly, a theoretical model of a piezo-metamaterial plate is obtained based on
the effective medium theory, and criteria for determining the bandgap range in the metamaterial are provided
by considering scenarios with and without damping. Subsequently, the bandgap merging phenomena between
separated multi-bandgaps are analyzed. Then, based on the genetic algorithm and considering the bandgap
merging phenomena, an optimization design method for widening the bandgaps is proposed. The bandgap
widening effects by using the optimization method are studied separately for transfer functions with and without
damping. Finally, numerical simulations are conducted to verify the effectiveness of widening bandgaps in the
metamaterials.

Materials and methods

Multi-resonant piezoelectric metamaterial

Metamaterial plate physical model

Figure 1 depicts a schematic diagram of the piezoelectric metamaterials plate and its unit. Each unit consists
of a base plate, two piezoelectric patches attached to the upper and lower surfaces of the plate structure respec-
tively, and digital synthesized impedance circuit connected to them. The metamaterial plate is composed of
units arranged periodically in the plane. The polarization direction of the piezoelectric patches is aligned with
the z-axis, and the surface electrode in contact with the plate is grounded. The digital synthesized impedance
circuit includes voltage scaling circuit, input voltage biasing circuit, controller, output voltage biasing circuit, and
voltage-controlled current source?, the overall effect of the circuit can be represented by the transfer function G.
The material parameters and geometric dimensions of the base plate and piezoelectric patches in a metamaterial
unit are shown in Table 1.
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Figure 1. Sketch of the designed piezoelectric metamaterial plate: (a) metamaterial plate; (b) top view of unit;
(c) side view of unit; (d) external digital circuit of unit.

Plate Piezoelectric patches
Material Aluminum | PZT-5H
Length (mm) 33.6 30.1
Width (mm) 33.6 30.1
Thickness (mm) 4 1
Young’s modulus (GPa) 70 58.8
Density (kg/m®) 2700 7700
Coupling constant (C/N) - - 1.7e-10
Relative permittivity under constant stress | — 1800

Table 1. Geometric and material parameters.

Bandgap determination criterion

Firstly, the equivalent parameters of the piezoelectric patch with shunting circuits are studied. The piezoelectric
patch can be considered as isotropic thin plate. Based on the plane stress assumption and the sub-wavelength
assumption, their equivalent in-plane Young’s modulus and in-plane Poisson’s ratio are®;

b _ g G+5CPT
=Ly 5y (1)
PG+sCl(1-k)
G—i—sCT<1—f—k2 v“)
sc P 31/ @)

P TGl (1-Ry)

where E;f and v;” are the in-plane Young’s modulus and Poisson’s ratio of the piezoelectric patch in the short-
circuit state respectively, k3; = d3; , JE¥ /€3 is the piezoelectric coupling coefficient, CPT = Ape3 /hpis the intrin-
sic capacitance of the piezoelectric patch under steady stress, C; = Cg (1 — k3, ) is the intrinsic capacitance of
the piezoelectric patch under steady strain, s is the Laplace parameter, d; is the piezoelectric coupling constant
of the patch, £F is the dielectric constant under steady stress, A, is the area of the patch, and hj, is the thickness.

In the unit, according to classical laminated plate theory?, the equivalent bending stiffness of the laminated
plate covered by the piezoelectric patch can be expressed as:

E
D = Dy + ——— [ (h +2hy)" = i}

12(1 - ug)

3)
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where D}, = Ehh-’b’ / 12(1 — vg) is the bending stiffness of the elastic plate, Ej, and vy, are the Young’s modulus and
Poisson’s ratio of the elastic plate, respectively.

Due to the different dimensions of the piezoelectric patch and the elastic plate, the equivalent parameters of
the entire unit are calculated using the effective medium method?:

Dy | Dy + D 4 D sC;k§1(1+v;c)
b1 E6 T Ep T 1213)) (1) (G+Gy) —sCok3, (145
Dy = TN 4)
— SC SC SSpi51 Yp
Dy +0 X’{DP +Dp (l—kél)(1—v;‘><c+sc;>—sc;k§1(1+v;ﬁ)}
peff = x (Pvhy + 20php) + (1 — Xx)pphy (5)
where = l;/lg is the coverage ratio of the piezoelectric patch in the unit,

Dy = Ey (hy + ZhP)3 - hi} /12(1 - vffz) is the equivalent bending stiffness of the laminated plate covered

by the piezoelectric patch when the piezoelectric patch is short-circuited, o, and p, are respectively the densities
of the elastic plate and the piezoelectric patch. The transfer function G is the multi-resonant transfer function
designed by the authors in". It makes the equivalent Young’s modulus Ej, of the piezoelectric patch resonate at
multiple frequencies, and multiple bandgaps are generated in the metamaterial. The expression of the transfer
function is:

n n

11 <52 + 2Biwp,is + “’,g,i) = I1( + 2Biwzis + z))

G(s) = syCps = =L (6)
171k21 [1 (s? +2Biwzis + w2;)— [1 (52 +2Biopis + a)f,,,-)

31 j—1 i=1

Bis wz,i» and wp,; represents the damping, zeros, and poles in the transfer function G respectively, and they
correspond one-to-one, with their quantity determined by the number of poles n. The poles can be expressed
as wp,; = 27f;, f; corresponding to the resonance frequencies of the poles. Then, n bandgaps at the # resonance
frequencies corresponding to the poles are produced at the metamaterial. The transfer function should satisfy
the Nyquist stability criterion, i.e., its poles should all be located in the left half-plane of the complex plane, and
the relationship between poles and zeros is obtained!’:

1

1 Zn

Wgi < wpi < | ——5 | @i, i=12,.,n (7)
1—k5,

The frequency dispersion relationship of the metamaterial can be expressed by the equivalent properties
of it. Here, we consider the dispersion relation in the x-direction of the metamaterial. The dispersion relation
of the metamaterial with two poles configured in the transfer function is shown in Fig. 2, where Fig. 2a and b
respectively depict the variation curves of the real and imaginary parts of the wavenumber with frequency. The
dispersion relation is described using complex wavenumbers:
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Figure 2. Dispersion curves corresponding to a two-pole transfer function with different level of damping.
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k = Re(k) + jImk) = | w g of (8)
off

Assume a harmonic wave solution u = Ae/®*~D_ from Eq. (8), we can obtain:
u= Ae—lm(k)xej(Re(k)x—a)t) (9)

This indicates, the real part of the wavenumber represents the phase change of the wave, while the imaginary
part of the wavenumber represents the attenuation of the amplitude in space.

Combining Egs. (4), (5), and (8), it can be observed that when the material and geometric dimensions of the
metamaterial are determined, the wavenumber value is only related to the transfer function G. According to the
expression of the transfer function (6), the parameters affecting wavenumber are #, f;, @i, wp,i. Pole w) ; and zero
w,,; affect the location where the poles are generated, while damping g; directly affects the wave propagation effect.

In Fig. 2, there are three curves each for the real and imaginary parts of the wavenumber dispersion curves,
with different damping configurations. In Fig. 2a, as the damping increases, the resonance effect of the real part
of the wavenumber gradually weakens. In Fig. 2b, when the damping is zero, there is a clear range of zero values
and non-zero values for the imaginary part of the wavenumber, where the non-zero range represents the bandgap
range. And if the damping is non-zero, there is no longer a strict zero-value range for the imaginary part of the
wavenumber. Therefore, in these cases, we define the regions where the imaginary part of the wavenumber Im(k)
is larger than a certain value k, as bandgaps. We require that the vibration decreases by at least — 10 dB after

passing through four unit cells. According to Eq. (9), 20log (%) = 20log (e*Im(k)'(Xzfxl)) = —10 (subscripts
1 and 2 represent two points in the direction of vibration transmission, and the distance between them is four
unit lengths), which gives the imaginary part of the wavenumber to be greater than 8.5534. Therefore, we have
chosen 10 as the bandgap criterion value here, i.e., k;, = 10. Results in Fig. 2 (and other references') also dem-
onstrate that, in terms of wave attenuation, damping has positive effect between the two poles but has negative
effect at and near the vicinity of the two poles. Therefore, increasing damping blindly is not advisable. Instead,
damping should be optimized to obtain the best attenuation characteristics.

Bandgap merging phenomenon

When multiple poles are configured in the multi-resonant transfer function, piezoelectric metamaterials can
generate multiple bandgaps. It has been found in studies that there is a coupling interaction between these mul-
tiple bandgaps. When the bandgaps are close enough, they merge into one, and the merged bandgap is wider
than the original multiple individual bandgaps®®.

Taking the case of two poles configured in the transfer function as an example, the phenomenon of bandgap
merging is illustrated in Fig. 3. When the damping in the transfer function is zero, the bandgap merging is
dominated by the distance between poles, as shown in Fig. 3a. If the distance between poles is less than or equal
to &®=0.028, two independent bandgaps merge, and the merged one is wider than the original two separate
bandgaps. When there is damping in the transfer function, besides the influence of the distance between poles,
the range of the bandgap is mainly affected by the damping magnitude, as shown in Fig. 3b. The distance between
poles a in the transfer function is set to 0.04, and the equal damping corresponding to the two poles is taken as
the independent variable, namely 81 = B, = 8. It can be observed that, without changing the distance between
poles, as the damping increases, the widths of the two independent bandgaps increase, and bandgap merging
occurs when the damping equaling a certain value. It should be noted that after bandgap merging, increasing
the damping continuously leads to a decrease in the bandgap width. From Fig. 3, it can be concluded that widen-
ing the bandgap can be achieved by merging multiple bandgaps in multi-resonant piezoelectric metamaterials.
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Figure 3. Bandgap changes with (a) pole spacing or (b) damping.
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When the number of poles in the transfer function exceeds 2, the situation of bandgap merging becomes
more complex. This paper considers using optimization algorithms to find the optimal effect of bandgap merging
when configuring multiple poles in the transfer function.

Optimization method

Due to the different methods of determining the bandgap range, it is necessary to discuss separately for §; = 0
and B; > 0 in the optimization calculation, with their corresponding bandgap criteria being Im(k) >0 and
Im(k) > ky,, respectively.

The optimization aims to merge multiple independent bandgaps generated by multiple poles into a wider
bandgap. Since the merged bandgap is wider than the individual bandgaps before merging, the optimization
objective is to maximize the length of the frequency range of the widest bandgap among all the bandgaps in the
multi-pole metamaterial. After determining the parameters of the transfer function, the imaginary part of the
wavenumber values can be obtained from Formula (8). From these values, the frequency range of the bandgap
is identified, and the left boundary frequency of the widest bandgap is denoted as w;, while w; is for the right
boundary. Therefore, the objective function for optimization is formulated as follows:

J = max (w; — 1) (10)

where the variable parameters are 1, B;, @i, and w,;. To improve optimization efficiency, it is necessary to con-
sider additional constraints to limit the design space.

In the case of two-pole transfer function, the bandgap merging in metamaterials occurs only when the
separation between poles is less than a critical value «*. However, in situations involving multiple poles (n>2),
due to coupling effects, the critical value for pairwise merging of bandgaps may be smaller than o*. Therefore,
choosing a* to limit the range of pole value search is rational.

For the cases with damping, the bandgap merging phenomenon depends on the value of 8 and the distance
between two poles. But, if the distance between two poles is too large, no matter what value the 8 is chosen, the
two bandgaps cannot be merged. Therefore, in our optimization procedure, to make the algorithm more efficient,
we restrict the distance of two poles to be less than a certain value. In our studies, we choose 2« and the results
demonstrate that we can find all the optimized parameters using this value. In other studies with different mate-
rial and geometry parameters, one may need to increase this value if the optimization algorithm fails. A metric
coeflicient p is introduced for «*, namely p = 1when 8; = 0,and p = 2 when 8; > 0. When considering damp-
ing in the transfer function, an appropriate damping factor 8 should be selected to adjust the bandgap effect.
However, the damping coefficient should not be too large to avoid weakening the resonance effect of the shunt
circuit. Here, the search range for f3 is chosen to be less than 0.1. The searching range of # must be enlarged if the
algorithm fails to find the optimized parameters. The constraints on variables wj,; and B;limit the design space to:

wo < wpi < [L4p-(i—Da*|wg,i=1,.,np=12

i (11)
0<Bi<0l,i=1,..,n

where wy is the target angular frequency, wy = 27 fy, the metamaterial generates a bandgap at frequency f, to
suppress structural vibrations. During the optimization process, wp,1 is fixed as the target frequency. For conveni-
ence in the optimization process, the pole values are normalized, by setting w},i = wp,i/Wp,1.

In this paper, genetic algorithms are utilized to solve optimization problems with a specified objective J. The
principle of genetic algorithms mimics the natural evolutionary process, where individuals better adapted to the
environment have higher chances of producing offspring for the next generation, gradually evolving towards
superior solutions. The evolution process begins with a randomly generated initial population containing Q
individuals, with each individual represented by a vector [wp,z, e @ps Wz 15+ s Dz Bl s /3,-} (which becomes
[a)pg, e @y W15 ,wz,n} when damping terms are disregarded), where the parameters in the vector are
subject to constraints (7) and (10). The optimization objective function (9) is directly employed as the fitness
function to evaluate the quality of individuals. Based on the obtained fitness values, three operators—selection,
crossover, and mutation—are applied to individuals in the population to generate better offspring. Subsequently,
anew generation is produced, and the aforementioned process is repeated. Through successive iterations, when
further improvements become unattainable, the optimal solution is obtained. Figure 4 illustrates the flowchart
of the optimization algorithm design.

Results and discussion

The damping term in the transfer function is zero

The optimization strategy above is used to optimize the case of ; = 0. In this case, the number of variables is
(2n — 1). Taking the case with three poles, the constraint on variable wp;is settol < wp; < [1+ (i — 1) - 0.028]
(i = 2, 3). The population size is set to Q=50. Figure 5a illustrates the evolution of fitness values during the
optimization process. Here are the optimal parameter values obtained through optimization when the number
of poles n is 3:

wp = [1,1.00314,1.02219]
12
w; = [0.98137,0.98445,1.00315] (12)

To clearly illustrate the evolution of bandgap merging, the dispersion curves of metamaterial unit cells are
used to represent the process, with parameters chosen from the initial generation, intermediate generations, and
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Figure 4. Flow chart of optimization algorithm to calculate optimal bandgap.

optimal results, as shown in Fig. 5b—d. It can be observed that in the initial generation, Fig. 5b, there are three
independent bandgaps, while in the optimal result, Fig. 5d, only one bandgap remains, formed by the merging
of the three independent bandgaps, and its width is greater than that of the individual bandgaps.

As is well known, genetic algorithm is time-consuming, with much of the computational resources spent on
repeatedly calculating fitness values. Therefore, the convergence time of the algorithm strongly depends on the
population size ((2n — 1) x Q) and the complexity of the fitness function. The larger the number of poles n, the
more time is required for computation. Therefore, here we first consider cases with 10 poles for calculation. The
optimization results are shown in Table 2. It can be seen that the width of the merged bandgap after combining
multiple poles is slightly wider than that of a single bandgap.

The metamaterial generates bandgaps in the structure through locally resonant units, which achieve structural
vibration control by blocking the propagation of elastic waves within the corresponding frequency range. Then,
the elastic wave transmission isolation characteristic of the bandgap is applied, and the optimized metamaterial
parameters are selected to simulate the vibration transmission isolation effect in the metamaterial plate in the
frequency domain, so as to verify the optimization results.

A simulation model of a piezoelectric metamaterials plate is established in COMSOL6.0, as shown in Fig. 5e.
The plate is composed of a 12 x 12 array of metamaterial units illustrated in Fig. 1b, with material parameters
and geometric dimensions listed in Table 1. In the metamaterial plate, piezoelectric patches are attached to the
upper and lower surfaces of the substrate plate. Add Solid Mechanics and Electrostatics as two physical fields,
and couple them to form the piezoelectric effect through multi-physics coupling. Apply free boundaries to the
metamaterial plate in the solid mechanics module. In the charge module, ground the surface of the piezoelectric
element adhered to the substrate plate. Adding a weak boundary contribution on the outer surface of the piezo-
electric patch to connect the circuit with compliance G to the piezoelectric patch in the COMSOL model. Weak
contributions are functionalities used internally in COMSOL for applying built-in domains and boundary condi-
tions. Here, the specific weak expression is given by ““{00V . G Tt represents the boundary condition of adding

iApw
charges on the outer surface of the piezoelectric patch. pHere, Ap is the area of the surface of a piezo-patch, G is
the transfer function in Eq. (6), V'is the voltage of the DOF, test(-) is an embedded function in COMSOL.

The central position of the simulated plate model is denoted as point A, which a unit harmonic point load
F is applied to simulate the disturbance applied to the structure, within the solid mechanics module. Point B is
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Figure 5. Bandgap merging results of the non-damping three-pole metamaterial: (a) convergence plot of

the optimized fitness value evolution; (b—d) are the dispersion curves of the metamaterial, with transfer
function parameters taken from points 1 (The pole values are wp = [1,1.028, 1.056]), 2 (The pole values are

wp = [1,1.01,1.026]), and 3 [Parameters are shown in Eq. (12)] in (a), respectively; (e) is the metamaterial plate
model used for simulation; (f) is the response curve at point B obtained from the simulation; (g) shows the
mode shapes of the metamaterial plate, with three frequencies taken on each side of the theoretical bandgap, the
numbers represent the normalized frequency, and the color is value of the longitudinal displacement |w|.
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n 1 2 3 4 5 6 7 8 9 10
Bandgap 0.06 |0.0626 |0.062 |0.0646 |0.0627 |0.0635 |0.0607 |0.0633 |0.0625 |0.062

Table 2. Bandgap width under multi-pole bandgap merging (8; = 0).

marked to the right of point A in the x-direction and is used to measure the vertical displacement response |w|
in the frequency domain due to the disturbance source, thereby verifying the effectiveness of vibration transmis-
sion isolation. The frequency response function can be used to characterize the transmission effect of vibration
from the source to the measurement position in the frequency domain. Dividing the vibration displacement
response by the amplitude of the excitation force yields the frequency response function at point B. Once the
model is configured, select the Frequency Domain Study in COMSOL. Add computation frequency points for
analysis, and examine the simulation results to observe the effects.

Taking the example of three-pole, the theoretical calculation of the normalized bandgap range is
[0.9971,1.0591]. Figure 5f shows the frequency response curve of point B under the effect of the transfer function
with three-pole (solid line), while the shaded region represents the theoretical bandgap range, and the dashed
lines denote the normalized frequency values of the simulated bandgap boundaries. The displacement response
expresses the vertical displacement |w| of the plate caused by its bending stiffness. Three frequencies are selected
near the theoretical bandgap boundaries to observe the corresponding vibrational modes, as shown in Fig. 5g.
From Fig. 5f, it can be observed that the frequency response function (FRF) of the numerical results exhibits a
trough within the theoretical bandgap range, indicating a significant reduction in displacement at the measure-
ment point. It indicates that this interval represents the bandgap range, as the bandgap blocks the propagation
of elastic waves within the plate, preventing the vibration generated by the central excitation of the plate from
propagating to the measurement point in the far field. The vibrational mode plots in Fig. 5g provide a more intui-
tive demonstration of the bandgap effect. At 0.997, the metamaterial plate undergoes significant deformation,
while at 0.9972, the deformation is localized at the center of the plate, indicating that the frequency is within
the bandgap, and the bandgap blocks the elastic wave propagation generated by excitation. The theoretical and
numerical bandgap boundary frequencies are in good agreement, with the left boundary frequency matching
well. At the right boundary, beyond the theoretical bandgap boundary frequency of 1.059, the deformation of
the metamaterial plate increases, suggesting that 1.059 can be considered as the right boundary frequency of
the bandgap. Therefore, the theoretically calculated bandgap range is in good agreement with the numerical
simulation results.

In addition, the results of n = 6,9 are presented in Fig. 6, with three plots corresponding to each case. These
plots depict the evolution of fitness values during the optimization process, the dispersion curves of the metama-
terial under the optimal parameters, and the frequency response curves. In the frequency response curves (c) and
(f), the theoretical bandgap range is also represented by shaded regions, while the simulated bandgap boundaries
are depicted by dashed lines with normalized frequency values. The bandgap determination method is the same
as that of the three-pole transfer function. For n = 6, the theoretical bandgap range is[0.9975, 1.061], while the
simulated bandgap is[0.9975, 1.061]. For n = 9, the theoretical bandgap range is[1.0, 1.0624], and the simulated
bandgap is[1.0, 1.062]. The results show that the theoretical and simulated bandgap ranges are in good agreement.

The above analysis results show that the merging of multiple bandgaps can indeed widen the bandgap, but
the effect is not very significant. Then, the reason why this method cannot significantly widen the bandgap is
analyzed in detail.

The inequality (7) provides a constraint relationship between zeros and poles, which can be reformulated
as follows:

[ 1
= e -1 (13)

Wp,i 1 2n
1-k3,

The range of value for the ratio in Eq. (13) narrows as the number of poles 7 increases. When considering no
damping, the single-pole transfer function has only two variables: pole w, and zero w,. Analyzing the variation
of bandgap width with the zero-pole ratio w, /w), as shown in Fig. 7, it can be observed that the bandgap width
decreases monotonically with the increase in the zero-pole ratio. Equation (13) indicates that as the number of
poles n increases, the zero-pole ratio increases compared to the left boundary of the value range. This implies
that the range of the zero-pole ratio becomes smaller and smaller. As shown in Fig. 7, the corresponding bandgap
width also becomes narrower. The width of each bandgap in metamaterials decreases as the number of poles
n increases. This also leads to the fact that increasing # does not significantly increase the width of the merged
bandgap.

Taking into account the damping effect in the transfer function

Using the optimization strategy mentioned above, optimization calculations are performed for the case of 8; > 0.
The number of variables is (3n — 1). Taking n=3 as an example, the constraints for variable w),; are set as
1 < wp;i < [1+4 (i—1)-0.048)i = 2, 3), and the constraints for variable B; are setas0 < 8; < 0.1. The number of
individuals is set to Q = 100. Below are the optimal parameter values obtained from the optimization when n=3:
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Figure 6. Fitness value evolution, dispersion curve, and frequency response curve of the non- damping
multi-pole piezoelectric metamaterials: (a-c) correspond to the six-pole metamaterial with the pole values of

wp = [1,1.000032, 1.0001, 1.00317, 1.01268, 1.02224], while (d—f) correspond to the nine-pole metamaterial

with the pole values of w, = [1,1.0004, 1.00165, 1.0054, 1.0057, 1.006, 1.012, 1.0124, 1.0192].
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Figure 7. Bandgap width changes with the zero-pole ratio.
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(b)

Figure 8a depicts the evolution of fitness values during optimization and the corresponding dispersion curves
for the final optimized parameters. In the subplot, the solid line represents the dispersion curve, while the dashed
line indicates k,, = 10.

Here, the case with ten poles is also considered for calculation. The optimization results are shown in Table 3:

Comparing optimization results with and without damping. It can be observed that when considering the
damping effect, the width of the merged bandgap of the multi-pole metamaterial increases with the number of
poles n, but the rate of increase gradually slows down as 7 increases. Under the same #, the presence of damping
significantly widens the bandgap. For instance, in the case of a damped ten-pole metamaterial, the bandgap is
200% wider than the without damping bandgap.

Similarly, the above optimization results are verified through simulations in COMSOL6.0. Due to the pres-
ence of damping, it is not possible to directly determine the bandgap position from the mode diagram of the
metamaterial plate. Therefore, we constrain the frequency band where the imaginary part of the wavenumber is
greater than 10 to indicate the bandgap. Here, the bandgap position is verified through the wavenumber values
obtained from simulation results.
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Figure 8. Bandgap merging results of the damped three-pole metamaterial: (a) theoretical calculation results:
the main plot shows the convergence of the optimized fitness value evolution, and the inset displays the
dispersion curve under optimized results with parameters given in Eq. (14); (b) the metamaterial plate model
used for simulation with damping; (c) the ratio of points B to A obtained from the simulation as a function of
frequency.

n 1 2 3 4 5 6 7 8 9 10
Bandgap 0.0602 | 0.0808 | 0.0947 |0.1041 |0.1087 |0.1132 |0.1164 |0.119 |0.1193 |0.1195

Table 3. Bandgap width under multi-pole bandgap merging (B; > 0).
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Using the same approach as the previous section, the simulation model is established. However, in this case,
wavenumber calculation is required to consider the propagation of elastic waves. Therefore, perfectly matched
layers are added around the metamaterial plate to absorb reflected waves, as indicated by the dark region sur-
rounding the plate in Fig. 8b. Specifically, establishing a fictitious domain in the Definition, adding a perfect
matching layer, and selecting the domain as all substrates and piezoelectric patches in the dark-colored regions.
The metamaterial plate, excluding the perfectly matched layers, consists of a 10 x 10 array of metamaterial units,
with excitation applied at point A and measurement taken at point B.

In the simulation model, a unit harmonic load is applied at point A in the center of the metamaterial plate,
generating elastic waves in it. From the wave solution in Eq. (9), the amplitude ratio between point B and point
A can be obtained as:

—Im(k
|up| _ Ae~Ims _ eIm(k)(xA—xB} _ e—3lh»1m(k) (15)
lual T Ae—Im(kxa T -

That is,Im(k) = —In ( %) /(3ly) > 10, where I, represents the geometric dimensions of the base structure

in the metamaterial unit. This leads to the requirements for the amplitude ratio between point B and point A
corresponding to the bandgap range:

|ug|

e300 — 03644 (16)
[ual

In the COMSOL Definition module, set up two point integrations (intop), selecting points A and B. Define the
variable V1 = |ug|/|ua|to compute the displacement ratio between the two points. After conducting frequency
domain analysis, we can plot the curve in the results.

Figure 8c investigates the metamaterial with a transfer function featuring three-pole. The solid line represents
the variation of the displacement amplitude ratio between point B and point A with frequency in the simulation
results, while the dashed line indicates the required ratio. It can be observed that the range satisfying the above
ratio requirement is [0.993, 1.083], and the theoretically obtained bandgap is[0.9934, 1.0881] (Indicated in the
figure by shaded regions), the left boundaries of both are essentially the same, while the simulated results on the
right boundary are slightly smaller. However, the error between the simulated bandgap width and the theoretical
bandgap width is less than 5%, so the simulated results can be considered reasonable.

Additionally, the results for n=6 and n=9 are presented in Fig. 9, including the evolution of fitness values
during optimization, the dispersion curves of the metamaterial obtained under the optimal parameters, and the
variation of the amplitude ratio between two points in the corresponding simulation results. Dashed lines are
used in the amplitude ratio curves (c) and (f) to indicate the bandgap ranges, applying the method described
by Eq. (16) for determination. The theoretical bandgap range for n=6 is [0.9971, 1.1103], while the simulated
bandgap is[0.998, 1.105]. Similarly, for n=09, the theoretical bandgap range is[0.9982, 1.1175], and the simulated
bandgap is [0.999, 1.113]. The left bandgaps in both cases are essentially the same, while the simulated results
for the right bandgap are slightly smaller but within the acceptable error range. Therefore, the simulated results
can be considered reasonable.

In the previous analysis, the frequency range where the imaginary part of the wave vector is greater than 10
is defined as the bandgap. Here, we discuss the influence of wavenumber selection on the bandgap range for n=3
by considering other wavenumber values. Optimization calculations are performed for k;, =5 and k;, =15, and
the results are shown in Fig. 10. Combining with Fig. 8, it can be observed that when a smaller k, is chosen for
optimization, a wider bandgap range is obtained; whereas, with a larger k,;, the resulting bandgap range is nar-
rower. In real applications, k;, is determined according to the desired wave attenuation level. For example, if we
want at least 50% reduce of the amplitude of a wave when it travels from point A to B, we can find the value of

ky, by kyp > —1In <@> /(IaB) = —1n (0.5)/(IaB), laB is the distance between point A and B.

[ual

The optimization results obtained under three different wavenumber constraints are compared through simu-
lations in COMSOL. Using the infinite model depicted in Fig. 8b, a unit point load is applied at the center of the
metamaterial plate, and the frequency responses measured at the same position on the periphery are shown in
Fig. 10e. The imaginary part of the wavenumber represents the decay of the amplitude in space. From the figure,
it can be observed that within the narrowest band corresponding to k;, =15 (i.e., the range [0.9964, 1.0615]),
the response curve represented by the bottom blue line, which corresponds to the constraint of ky, = 15, exhibits
the smallest response amplitude and the fastest decay. Conversely, the response curve for k;, =5, indicating the
smallest wavenumber constraint, exhibits the largest response amplitude and the slowest decay. However, from
a wider frequency range, the response curve for k;, =5 shows attenuation over a larger range, while the response
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Figure 9. Fitness value evolution, dispersion curve, and ratio curve of points B to A for damped

multi-pole piezoelectric metamaterials: (a—c) correspond to the six-pole metamaterial with the

pole values ofa)p = [1,1.01094, 1.02656, 1.04598, 1.06835, 1.09652] and the damping values of

B = [0.00046, 0.010475, 0.01353,0.0164, 0.0148,0.011399]; (d-f) correspond to the nine-pole metamaterial
with the pole values of w, = [1,1.0017, 1.0142, 1.0273, 1.0354, 1.0457, 1.0649, 1.0843, 1.105] and the damping
values of 8 = [0.0011, 0.0045, 0.008, 0.01, 0.0217,0.0114,0.0117,0.011, 0.0074].

curve for ky, =15 has the smallest impact range. Reducing the constraint on the wavenumber can increase the
range of attenuation, but it also weakens the attenuation effect.

Conclusion

This paper presents a method for widening the bandgap of multi-resonant piezoelectric metamaterials. The
equivalent properties of the metamaterial plate are derived, and the dispersion relation represented by complex
wavenumbers is obtained. By analyzing the influence of damping effects on the dispersion relation in the trans-
fer function, criteria for determining the bandgap range with and without damping in the transfer function are
provided. By discussing the phenomenon of bandgap merging in metamaterials, an optimization design method
for widening the bandgap in metamaterials based on genetic algorithms is proposed. Optimization designs
are conducted for both with and without damping multi-pole metamaterials, and in both cases, the optimized
bandgaps are wider than the previous independent ones. Without damping, the bandgap can be slightly widened,
while with damping, the bandgap frequency range can be significantly expanded by over 200% through bandgap
merging. This validates the effectiveness of the method for widening the bandgap in piezoelectric metamateri-
als. The proposed method for widening the bandgap in metamaterials can achieve broad vibration suppression
capabilities at the target frequency and can actively tune the frequency range of vibration suppression.

Scientific Reports |

(2024) 14:16127 | https://doi.org/10.1038/s41598-024-66849-6 nature portfolio



www.nature.com/scientificreports/

(a)

(c)

Fitness value

Fitness value

-0.06 T
= Mean fitness
-0.08 - ® Best fitness | |
-0.10 =
012 m o
[ - gl
-0.14 - '_ .'_ "m .
. = l. ’- .
-0.16 \-—\\ o Wl .
o, s
-0.18 ° [a
-
-0.20 L . . . .
0 20 40 60 80 100
Generation
Best:-0.0651 Mean:-0.058907
0.00 T T T T T
m  Mean fitness
-0.01 e Best fitness | J
]
-0.02 "
| ]
-0.03
| ]
-0.04} "
o =
o -~ -
-0.05* s = -.“\'h. o
0061 *\j-ﬁ LR
-0.07 L . . . .
0 20 40 60 80 100
Generation
(e) -120 T
-130 -
5-140
=,
o
. -150 F
-160 -
-170 L
0.95 1.00

Best:-0.1906 Mean:-0.174787

(b)

(d)

10
9F
8
7
6
E 5
4
3
2
1t
0 1.00 1.05 110 1.15
/o,

o/m,

—_— k=5
— k=10
— k=15

1.05

1.10
/0,

1.15 1.20

Figure 10. Detailed explanation of the meaning of k;,, using the three-pole metamaterial as an example: (a, b)
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results for k=5, 10, and 15.
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