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Abstract

The aim of rationally designed composites called metamaterials or 
metasurfaces is to achieve effective properties that go beyond those 
of their constituent parts. For periodic architectures, the design can 
draw on concepts from solid-state physics, such as crystal symmetries, 
reciprocal space, band structures and Floquet–Bloch eigenfunctions. 
Recently, nonlocality has emerged as a design paradigm, enabling 
both static and dynamic properties that are unattainable with a 
local design. In principle, all material properties described by linear 
response functions can be nonlocal, but for ordinary solids, local 
descriptions are mostly good approximations, leaving nonlocal effects 
as corrections. However, metamaterials and metasurfaces can be 
designed to go far beyond local behaviour. This Review covers these 
anomalous behaviours in elasticity, acoustics, electromagnetism, 
optics and diffusion. In the dynamic regime, nonlocal interactions 
enable versatile band structure and refraction engineering. In the static 
regime, they result in large decay lengths of ‘frozen’ evanescent Bloch 
modes, leading to strong size effects. For zero modes, the decay length 
diverges.
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simply proportional to the length of the wire L, because one can decom-
pose the wire into a set of resistors in series, each of which follows a 
local version of Ohm’s law. This simple behaviour forms the basis for 
resistive touch screens.

Nonlocal responses cover a much broader class of behaviours5, con-
taining local responses as special cases. For example, in one dimension,  
the nonlocal form of Ohm’s law is defined by

∫j x σ x x E x x( ) =
−∞

∞
′( − ′) ( ′)d ′. (1)

From equation (1), we see that the current density j x( ) at location 
x depends on the electric field E x( ′) at many other locations x x′ ≠  by 
a mathematical convolution with the nonlocal electric conductivity 
σ x x′( − ′). For the special case of σ x x σ δ x x′( − ′) = ( − ′) , with δ being  
the Dirac Delta function, a local response is recovered. By Fourier 
transformation of the nonlocal form, we obtain

j k σ k E k~( ) = ~( ) ~( ) (2)

via the convolution theorem5. Herein, the conductivity σ k~( ) explicitly 
depends on the spatial frequency or wavenumber k. Such behaviour 
is often referred to as spatial dispersion5, which is directly linked to 
nonlocality.

Let us consider the special case that we can expand the function 
σ k~( ) in equation (2) in a Taylor series as σ k σ ξ k ξ k ξ k~( ) = + + + …0 1
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with coefficients ξ ξ, , …1 2 . Insert this expansion into equation (2)  
and Fourier transform back to real space with, for example, 
kE k E x x~( ) → −id ( )/d  (ref. 5), leads to the form
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We can also equivalently reformulate equation (3) to a set of cou-
pled first-order equations by introducing auxiliary quantities 
a x j( ) ( = 1, 2…)j :

⋮
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We see that we can express nonlocality mathematically in at least 
four different ways: in terms of a spatial convolution integral (equa-
tion (1)), as a wavenumber dependence (equation (2)), as higher-order 
spatial derivatives (equation (3)) or as a set of coupled first-order 
equations in equation (4). We will see below that all four ways generally 
lead to anomalous behaviour such as size effects and characteristic 
length scales.

For materials that exhibit chirality7, which is defined by the lack of 
a centre of inversion, the absence of mirror planes and the absence of 
rotation-reflection symmetries, the odd-order and even-order terms 
can generally be non-zero. For achiral media, the odd-order terms are 
zero by crystal symmetry, ξ ξ ξ0 = = = = …1 3 5 .

It is generally demanding to derive the aforementioned phenom-
enological nonlocal descriptions from the microscopic Hamiltonian 
of a system. Nevertheless, it is instructive to discuss a simple exam-
ple model that leads to nonlocal behaviour: in equation (5), we  

Key points

	• Metamaterials are rationally designed composites with effective 
properties that go beyond their constituents. Following this definition, 
metamaterials include photonic and phononic crystals.

	• (Meta)material response functions can be phenomenological or 
result from a theoretical homogenization procedure. For nonlocal 
materials, the response function at a given location depends not only 
on the field at that location but also on the field at other locations.

	• We review nonlocal metamaterials for diverse physical fields 
according to three unified physical mechanisms to incorporate 
nonlocality, that is, beyond-nearest-neighbour interactions, chirality 
and delocalized zero modes.

	• The nonlocal mechanisms mentioned earlier can lead to interesting 
wave properties, such as roton-like dispersion, topological insulators 
with large winding number, chiral eigenmodes and frequency splitting 
and anomalous dispersion cones.

	• Nonlocality also induces static properties with anomalously large 
characteristic lengths, connected to frozen evanescent modes 
(evanescent Bloch modes at zero frequency) emerging from local 
minima on dispersion relations.

	• Time dependence is introduced as a separate and emerging 
method to achieve nonlocal responses in metamaterials, that is, the 
time-reflection coefficient and time-refraction coefficient become 
spatially dispersive or wavenumber-dependent.

	• Nonlocal metasurfaces often use leaky-wave modes or physical 
coupling to build nonlocal interactions in metasurfaces, enabling high 
frequency selectivity or performing spatial derivatives on incident 
wave fields.

Introduction
Natural materials composed of atoms and artificial materials — meta-
materials — composed of tailored building blocks or ‘meta-atoms’1 
form the basis for any kind of device and system in electronics, mechan-
ics, acoustics and photonics. In the process of designing devices such 
as computer chips, mechanical support structures, acoustic insulation 
or photonic circuitry, one needs specific macroscopic descriptions of 
the (effective) response functions of the involved (meta)materials. 
These response functions can be phenomenological or can arise from 
a theoretical homogenization procedure and include the electric con-
ductivity, the Young’s modulus, the compressibility or the optical 
permittivity in their special local form2–4. One example of a local 
response function is the microscopic form of the static version of Ohm’s 
law j σE=  (ref. 5). The current density j j x= ( ) at position x is propor-
tional to the electric field E E x= ( ) at the same position and the conduc-
tivity σ σ x≠ ( ) is constant for a homogeneous material. Other examples 
include Hooke’s law of elasticity and its generalizations in continuum 
mechanics2,6, Fick’s first law of diffusion4, Fourier’s law of heat 
conduction3 as well as magnetic and electric susceptibilities in elec-
tromagnetism and optics5. Locality has immediate consequences. For 
the macroscopic form of Ohm’s law, the resistance R L∝  of a wire is 
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consider a 1D tight-binding Hamiltonian H in matrix representation  
with local energies E0 and wavefunctions φ ϕ x= ( − na)n 0  with 
n = −∞, …, −1, 0, + 1, …, + ∞. These wavefunctions are localized at 
sites x x= = nan , in which a is the period or lattice constant. V1 shall be 
the interaction energy between the immediate neighbours to the left 
(−) and the right (+), that is, the local interaction. VN shall be the interac-
tion energies with the ±Nth nearest neighbours (with N = 2, 3,…), that 
is, the nonlocal interactions. From this Hamiltonian

we obtain the (real-valued) eigenenergies E = ℏω of the Bloch 
wavefunctions versus wavenumber k

∑E k E V Nka( ) = + 2 cos( ). (6)
N

N0
=1

∞

From equation (6), it is immediately clear that this energy disper-
sion relation is an infinite Fourier series with Fourier coefficients V2 N, 
allowing to Fourier-synthesize any wanted behaviour for E k( ) within 
the first Brillouin zone k π a π a∈ [− / , + / ], at least in principle. By con-
trast, without nonlocal interactions, that is, for V V= = . . = 02 3 , we always 
get the simple cosine shape E(k) = E0 + 2V1cos(ka). The dispersion rela-
tion or band structure in equation (6) describes propagating Bloch 
waves with real-valued k as well as Bloch waves with complex-valued k, 
for which the wavelength at a given k is λ = |2π/(Re(k))| and the expo-
nential decay length is given by l = |1/Im(k)|. We refer to the latter as 
evanescent waves even if Re(k) ≠ 0. Examples of evanescent Bloch waves 
at finite frequencies are surface waves, which sometimes have a topo-
logical origin8–11. There also exist evanescent Bloch waves at zero fre-
quency (the so-called frozen evanescent waves)12. Furthermore, there 
are non-Bloch solutions at finite frequencies and zero frequency12,13.

We note in passing that the physics and the notion of nonlocal 
interactions become less clear if we use a larger or extended unit cell 
instead of the primitive cell or Wigner–Seitz cell14. In this case, nonlo-
cal interactions turn into particular inner degrees of freedom within 
the extended unit cell. Of course, the nonlocal material properties 
discussed earlier do not depend on the choice of the unit cell — which is 
why we have defined nonlocality on the basis of the macroscopic mate-
rial properties rather than on the basis of the microscopic structure of 
the (meta)material.

For atomic materials and crystals, the long-range Coulomb inter-
action between electrically charged particles introduces nonlocal 
interactions, but we cannot engineer the nonlocal coefficients 2VN>1 
at will. Nature has done that. Nevertheless, nonlocal effects can be 
important in atomic materials15. The situation is different for nonlo-
cal metamaterials. Here, quantum mechanics is usually not directly 
relevant. We can replace the quantum-mechanical wavefunction by 
a classical pressure field, a displacement field, an electric or a mag-
netic field. This aspect has been extensively discussed in a recent 
roadmap16. The interactions, analogous to the energies VN in equa-
tion (5), can be designed and realized by periodically arranging pipes 
(acoustics), rods (elasticity), waveguides (optics and elasticity), cables 
(electromagnetism) or wires (Ohm’s conduction) in real space. Math-
ematically, nonlocality cannot appear in strictly 1D microstructures17.  

One therefore needs 3D microstructures to avoid unwanted crossings 
of the connecting elements — even if one only targets a 1D periodic 
metamaterial architecture, as shown in Fig. 1a.

This Review is structured into nonlocal metamaterials and nonlo-
cal metasurfaces. Both are always structures in 3D space and may be 
periodic along one, two or three directions. What is different is the 
spirit. For metamaterials, the aim is to tailor the behaviour of waves 
inside the metamaterial. One grasps that behaviour by band struc-
tures and Floquet–Bloch eigenfunctions. Under suitable conditions, 
approximate effective-medium descriptions in terms of equivalent 
continua may apply. We cover elasticity, acoustics, electromagnetic 
waves and electric conduction (a diffusion-type problem), but struc-
ture this part according to the mechanisms giving rise to nonlocality: 
beyond-nearest-neighbour interactions, chirality, delocalized zero 
modes and time dependencies. For metasurfaces, the aim is to engineer 
the direction, polarization and amplitude of waves outside the metas-
urface emerging by anomalous effective refraction or reflection from 
the metasurface, seen as a thin slab of material. Here, nonlocality means 
that the reflection or refraction at one position x of the interface not 
only depends on the metasurface properties at that positions but also 
on the properties at many other positions x′ within the 2D metasurface. 
Nonlocal metasurfaces for optics and acoustics have recently been 
reviewed in detail18–20. Therefore, we do cover nonlocal metasurfaces, 
but emphasize recent progress with respect to refs. 18–20.

Nonlocal metamaterials
In Fig. 2, we depict several examples of nonlocal metamaterials, which 
are all based on the three mechanisms we will discuss in the following. 

… …

…

…

…

…

V1

V2

V3
a

a

n – 3 n – 2 n – 1 n n + 1 n + 2 n + 3

a

b

Fig. 1 | Illustration of nonlocal interactions in a tight-binding model. a, 1D 
system with period a and nonlocal interactions. V1 represents local interactions 
between nearest-neighbour sites (for example, n and n + 1), whereas V2 and V3 
stand for nonlocal interactions between two sites separated by a distance of 2a 
and 3a, respectively. For clarity, only four such nonlocal interactions are shown. 
b, Corresponding 2D nonlocal system.
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The first and perhaps most straightforward way to introduce strong 
nonlocality following Fig. 1 is to couple metamaterial unit cells with 
their beyond-nearest-neighbours via physical components (Fig. 2a–e). 
This concept has been successfully realized for elastic waves21–31, acous-
tic waves32–35, radiofrequency electromagnetic waves36,37 and electric 
conduction in metawires38 (Fig. 2h). Alternatively, pronounced nonlo-
cal interactions can be effectively achieved in metamaterials (Fig. 2f) 
by leveraging a special type of zero modes, called delocalized zero 
modes39. We will explain in detail the mechanism later. Furthermore, 
structures that are chiral (Fig. 2g) can exhibit unique nonlocal responses 
impossible to achieve with achiral metamaterials40–42. Here, chirality7 
means the absence of a centre of inversion, the absence of mirror planes 
and the absence of rotation–reflection symmetries of the metamaterial 
crystal. We discuss these three types of nonlocal mechanisms in the 
following three sections.

Beyond-nearest-neighbour interactions
Equation (6) states that a metamaterial can be expressed by a Fourier 
series, and one can therefore realize any analytical function or disper-
sion relation E(k) by tailoring the strength of the nonlocal interactions 
of different orders. Experimentally, these interaction strengths can be 
controlled by the connecting elements, as shown in Fig. 2a–e.

Roton-like dispersion relations. In elasticity, when only local interac-
tions are present, one gets the textbook acoustic dispersion relation 
ω(k)∝|sin(ka/2)| with only one Fourier component14. Dispersion rela-
tions that contain two Fourier components resemble the roton disper-
sion of sound in superfluid Helium-4 (ref. 43). For small wavenumbers k, 
the roton dispersion relation starts as ω(k) ∝ |k|, followed by a maximum 
(the ‘maxon’), a minimum (the ‘roton’) and a rise towards the edge of 
the first Brillouin zone. Richard Feynman interpreted the minimum as 
arising from a quasiparticle, namely, the rotation of a group of local 
atoms44. In 1965, the roton dispersion relation in Helium-4 was verified 
experimentally by inelastic neutron scattering45, but over the years, 
further experiments and theoretical developments have refined the 
roton dispersion in Helium-4 (ref. 46).

Similar dispersion relations have been discussed and observed 
in various other correlated quantum systems at low temperature47–49. 
In classical metamaterials, roton-like dispersion relations have 
been obtained under ambient conditions23,33. The physics for the clas-
sical case can be understood from a nonlocal mass-and-spring 
model (Fig. 3a). To obtain two Fourier components, we consider 
two types of springs: one with spring constant K1 for the nearest- 
neighbour connections (‘local’) and the other one with spring constant 
KN for connection (‘nonlocal’) between Nth nearest neighbours  
(with N = 3 in Fig.  3). This leads to a dispersion relation follow-
ing ω K m ka K m= ( / )sin ( /2) + ( / )sin (3ka/2)2

1
2

3
2 , which is illustrated in 

Fig. 3b. It exhibits a roton-like minimum at k π a≈ 2 /(3 ) for sufficiently 

strong nonlocal interactions. This anomalous behaviour can be inter-
preted as arising from the hybridization of two ordinary phonon 
dispersion relations21. It leads to several unusual and interesting prop-
erties, including triple refraction owing to three coexisting Bloch 
states at the same frequency and broadband negative refraction32 — 
theoretically at strictly zero loss50. Furthermore, for the wavenumber 
range with negative group velocity, the energy flow through the third-
order nonlocal springs becomes negative21. In the limit of K K/ → ∞3 1 , 
the roton-like minimum approaches zero frequency, leading to a 
delocalized zero mode, which is discussed subsequently.

The nonlocal strategy based on two Fourier components has 
been experimentally verified on different physical platforms, includ-
ing elastic23,25, acoustic33,34 and radiofrequency systems36 with elastic 
rods, acoustic channels or bayonet-Concelman (BNC) coaxial cables 
(Fig.  2a–e) coupling to beyond-nearest-neighbours. A stringent 
requirement is that the rods or channels that mediate nonlocal inter-
actions must not overlap with each other, otherwise the interaction 
scheme is completely altered32. Periodic implementation with this 
constraint is more difficult in two33 (Fig. 2d,e) and three dimensions51 
than in one dimension21. Anomalous refraction, however, requires 
two or three dimensions32. Nonlocal interactions can also be induced 
through active feedback circuits, with the advantage of tunability via 
an external control parameter52.

The effective-medium theory of nonlocal systems has been inves-
tigated in many studies, particularly starting from simple discrete 
models53,54, but higher-order differential equations or fractional 
differential equations have also been proposed55,56. Although most 
of these studies assumed only small deviations from local behav-
iour, the roton-like dispersion relation is connected to stronger 
effects of nonlocality23. This behaviour has successfully been cap-
tured qualitatively by effective-medium descriptions based on a 
higher-order differential equation with spatial derivatives up to the 
sixth order23. The effective-medium theory also qualitatively con-
firmed wave transmission through a nonlocal metamaterial slab57,  
including bound sates in the continuum58 that result from three 
coexisting Bloch states.

New avenues for topological physics. Beyond-nearest-neighbour 
interactions do not only change the dispersion relation of the low-
est band but also lead to unusual topological properties of higher 
bands35. An example is the extended 1D Su–Schrieffer–Heeger (SSH) 
model, which includes third-order nonlocal interactions (Fig. 3c). 
Interestingly, the established approach based on the Zak phase59  
no longer correctly captures the topological properties of the 
system35. Instead, the description needs a topological winding 
number60. In contrast to a winding number of one in the standard 
SSH model, the extended SSH model can have a winding number of 
two (Fig. 3d), or a larger winding number if higher-order nonlocal 

Fig. 2 | Gallery of nonlocal metamaterials based on different mechanisms. 
a–e, Nonlocal metamaterials based on beyond-nearest-neighbour interactions 
(Fig. 1). All these structures are 3D. Parts a–c are periodic along only one 
direction and the nonlocal interactions are mediated by rods, beams or 
bayonet-Concelman (BNC) cables. Part a is adapted from ref. 12, CC BY 4.0. 
Part b is adapted from ref. 25, CC BY 4.0. Part c reprinted with permission from 
ref. 36, Wiley. Parts d and e are periodic along two directions. The blue and red 
cylinders in part d represent third-order and fifth-order nonlocal interactions, 
respectively. The inset in part e highlights the nonlocal couplings by channels for 
sound. Part d is adapted from ref. 32, CC BY 4.0. Part e is adapted from ref. 33,  

CC BY 4.0. f, Nonlocal metamaterial based on delocalized zero modes. The 
left panel shows a finite 2D periodic structure, and the right panel shows one 
of its unit cells. Part f adapted with permission from ref. 39, APS. g, Nonlocal 
metamaterial based on chirality. The cross-shaped rods (one highlighted in red)  
couple the structure in a chiral manner and also mediate beyond-nearest-
neighbour interactions. Part g adapted with permission from ref. 134, Wiley. 
h, Electric metawire with the same mechanism as in parts a–e but for nonlocal 
electric conduction. Thick and thin enamelled copper wires are electrically 
connected at soldering points (see the enlarged view at the bottom).  
Part h is adapted from ref. 38, CC BY 4.0.
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interactions are involved35. As a result, more edge states emerge. 
When calculating the number of domain-wall states between two 
topological phases, the winding number fails, and one needs to 
use the Berry connection or Jackiw–Rebbi index61. In 2D systems, 
beyond-nearest-neighbour interactions can also lead to an increased 
number of interface states and Dirac cones62. Furthermore, nonlocal 

interactions can enable specific higher-order topological states, 
such as 0D corner states63–65. This has been observed in photonic 
kagome lattice of dielectric cylinders64. The corner states can only 
be explained if the next-nearest-neighbour couplings are accounted 
for in a tight-binding model64. Yet, more complex behaviours are 
expected for higher-order nonlocal interactions.
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Delocalized zero modes
To understand what a delocalized zero mode is and how it leads to 
nonlocality, let us consider the pantographic mechanical structure66–68 
(Fig. 4a), which is inspired by pantographs or scissor mechanisms. 
All struts (straight lines) are coupled by hinges (open blue circles) 
such that an angle change on the left-hand side is transferred to the 
right-hand side, which is a highly nonlocal response. For ideal hinges 
and rigid struts, this transfer requires zero energy, even over very 
large distances, corresponding to a delocalized zero mode. Mathe-
matically, a delocalized zero mode is a Bloch-wave mode with a 
well-defined Bloch vector zmk  that can be excited with strictly zero 
energy. It is fundamentally different from the Guest–Hutchinson zero 
modes69–71 in many mechanical systems with insufficient connectivity, 
such as 2D mechanical square lattices or kagome lattices composed 
of masses and springs72–74. These systems host an infinite number of 
zero modes across extended regions in reciprocal space39. As localized 
zero modes at any location can be constructed from these zero modes, 
a local perturbation cannot propagate to a distant location.

Anomalous cones. A delocalized zero mode can create an anomalous 
cone at k zm in reciprocal space (Fig. 4b), owing to the continuity of fre-
quencies versus wavenumbers. The cone is anomalous in the sense that 
the zero mode is different from trivial zero modes at k = 0, which repre-
sent rigid translations in mechanics or homogeneous optical fields in 
vacuum. Anomalous cones can be used to achieve broadband negative 
refraction even down to the static frequency range (see Fig. 4b for a 
dispersion relation and Fig. 4c for selected iso-frequency contours)39,75. 
For electromagnetism, it has been shown that such behaviour cannot 
be achieved for a purely local medium50,76. For anomalous cones shifted 
to non-zero wavenumber, orientation-dependent coupling to an ordi-
nary background material leads to enhanced directional emission75. 

Additionally, metamaterials with anomalous cones constitute a platform 
for Weyl physics that is much more controllable and that makes experi-
ments easier than for atomic materials73. Spatially confined locally reso-
nant modes can become extended or delocalized through coupling via 
multiple scattering or by hybridization with propagating modes. This 
enables interesting phenomena such as negative refraction and topologi-
cal wave behaviours77–79. However, these properties are typically limited 
to a narrow frequency range close to the local resonance frequency.

Delocalized zero modes and anomalous cones have extensively 
been studied in mechanics72,73. The resulting metamaterials gener-
ally rely on small tips to approximate ideal hinges (see Fig. 2f as one 
example). A recent design strategy is based on ‘oligomodal’ mechanical 
metamaterials80, which host a fixed number of zero modes irrespective 
of system size. A method based on directed graphs has been proposed 
to analyse these zero modes and to design anomalous cones at any 
wavenumber in reciprocal space13,39.

A second method is based on a special type of elastic materials 
whose elasticity matrices have one or more zero eigenvalues81–84. 
Each zero eigenvalue leads to an easy mode, or specifically to a strain 
state that induces zero elastic strain energy. Elastic materials with 
easy modes can be realized by solid microstructures85–89. The kagome 
lattice mentioned earlier is an example72,90,91. In materials with easy 
deformation modes, Bloch modes along one or more wavevector 
directions have zero frequency92. A single Bloch mode at an isolated 
wavenumber can be obtained by supercell-induced band-folding93. 
Alternatively, distortions can be introduced into these materials to 
eliminate excessive zero modes72,73. This approach has been used to 
achieve mechanical Weyl points, although the cone location cannot 
easily be predicted and adjusted73.

Interlaced wire media have been used to obtain anomalous cones 
in electromagnetism94–97. Normally, a simple cubic mesh grid of wires 
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Fig. 3 | Beyond-nearest-neighbouring interactions for tailoring dispersion 
bands and topological properties. a, A 1D mass-and-spring model with nonlocal 
interactions for roton-like bands. Each mass (grey circles) is coupled to their 
immediate neighbours by springs (blue lines), with spring constant K1, as well as 
to their third-nearest-neighbours by springs (red lines), with spring constant K3. 
b, Phonon bands for the nonlocal model in part a. Roton-like band, featured with 
a local minimum on the band, is obtained for strong nonlocal interactions.  

Part a is adapted from ref. 21, CC BY 4.0. c, Extended Su–Schrieffer–Heeger 
tight-binding model with third-order nonlocal interactions (red and yellow lines). 
d, Winding numbers of the model in part c with w v= −0.5, = −1.51 1  and different 
combinations of nonlocal interaction strength. A maximal winding number of 2 
instead of 1 for the standard Su–Schrieffer–Heeger model can be obtained.  
Part d reprinted with permission from ref. 35, APS.
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has no dispersion band emerging from zero frequency because all wires 
have the same electric potential in the low-frequency limit and only the 
trivial solution of zero electric field is allowed. However, the situation 
becomes drastically different for two disconnected copies of a mesh 
grid, also referred to as non-Maxwellian media95. In such metamaterials, 
Bloch modes starting from zero frequency occur75. The Bloch modes 
originate from the potential difference between the two (or more) 
mesh grids and share similarities with the propagating modes between 
two parallel metal plates. The location in k-space and the number of 
anomalous cones can be controlled by the connectivity of wire mesh75. 
The analogy of this concept for elastic waves was discussed in ref. 13.

Frozen evanescent modes. In real-life metamaterials, perturbations 
generally lift the zero-frequency minimum of the anomalous cones 
to a minimum at finite frequencies (Fig. 4d). Thus, at first sight, no 

zero-frequency modes or waves seem to occur. However, evanescent 
modes with complex-valued wavenumbers still exist.

To appreciate this general behaviour, consider a local parabolic 
minimum of the dispersion relation as an example (Fig. 4d). This disper-
sion relation can be Taylor-expanded around the local minimum 
k ω( , )min min  as ω ω ζ k≈ + Δmin

2 with ζ > 0 and k k kΔ = − min (refs. 98,99). 
As a result, two branches emerge from the local minimum and bend 
towards lower frequency12. These two branches lead to two Bloch 
modes with strictly zero frequency (dots in Fig. 4d) and complex con-
jugated wavenumbers k k k k ω ζ= Re( ) ± iIm( ) ≈ ± i /zm zm zm min min . These 
static or ‘frozen’ Bloch modes are evanescent waves with a spatial 
oscillation period of π k2 /|Re( )|ZM  and an exponential decay length of 
l k ζ ω= 1/|Im( )| ≈ /zm min, which diverges as ωmin approaches zero fre-
quency. These additional bands and the corresponding frozen evanes-
cent modes (Fig.  4e) have been demonstrated in a nonlocal 
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Fig. 4 | Delocalized zero modes for nonlocality. a, A 1D pantographic structure 
consists of struts (straight lines) coupled by hinges (open blue circles). For the 
case of ideal hinges and rigid struts, the bottom panel depicts a delocalized zero 
mode of the structure, in which the angle between two adjacent struts in each 
unit cell increases by the same amount. The deformation mode is a delocalized 
zero mode, a Bloch mode with Bloch wavenumber k = 0ZM . The zero mode enables 
transfer of an angle (θ) change between the two left-most struts to the two 
right-most struts of a finite-size periodic structure — a highly nonlocal behaviour. 
For non-ideal hinges and/or non-rigid struts, the transfer of angle change is no 
longer perfect, yet nonlocal behaviour persists. b, An anomalous cone, 
highlighted by the green shading, naturally emerges from the wavenumber, kzm, 
of a delocalized zero mode. Zero group velocity (v = 0g ) and negative group 
velocity (v < 0g ) can arise at certain wavenumber. c, Iso-frequency contours of the 

metamaterial shown in Fig. 2f with a delocalized zero mode at k K=zm . d, In actual 
metamaterials, the ideal anomalous cone (black line) is modified (blue line), 
leading to a local minimum (blue circle) at finite frequency. In the complex 
wavenumber space, two complex-valued bands, with real-valued frequencies but 
complex-valued wavenumbers, start from the local minimum, ω min, and lead to 
evanescent modes at zero frequency (red circles) — frozen evanescent Bloch 
waves, with complex-valued wavenumbers kzm and k ′zm. The grey plane and green  
plane correspond to ωRe( ) = 0 and kIm( ) = 0, respectively. e, Complex-valued 
band structures of the nonlocal metamaterial beam shown in Fig. 2a. Right panels 
show the displacement fields for the longitudinal evanescent mode (blue circle in 
part e) and torsional evanescent mode (red circle in part e). The green plane 
corresponds to kIm( ) = 0. Part e is adapted from ref. 12, CC BY 4.0.
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metamaterial beam12. The frozen evanescent modes (Fig. 4e) clearly 
show spatially oscillatory and exponentially decaying profiles.

Such frozen evanescent modes emerging from some local 
minimum in the dispersion relation are common for crystals and 
metamaterials100–103. However, they are often not relevant for two rea-
sons. First, their decay length is often extremely short and on the scale 
of one period or lattice constant of the system. This means that only 
the last atoms or meta-atoms at the edge of the sample are affected. 
Second, the corresponding spatial modes may be complicated and 
exhibit intricate spatial distributions, such that one cannot couple to 
these modes under ordinary conditions.

By contrast, frozen evanescent modes with large decay lengths 
can lead to pronounced anomalous static responses reaching deep into 
the bulk of a sample12. For example, when stretching an ordinary elastic 
beam with finite length, the displacement simply increases linearly 
from one end to the other. In sharp contrast, nonlocal metamaterial 
beams can exhibit strong spatial oscillations arising from frozen eva-
nescent phonon modes12. The resulting displacement fields depend on 
the boundary loading, leading to a violation of Saint-Venant’s principle  
in mechanics104 with potential applications in remote sensing12. 
Moreover, two or more frozen evanescent phonon modes can lead 
to constructive or destructive interference of the displacement field 
in the middle of the beam, depending on the length of the beam. 
This behaviour is similar to Fabry–Pérot resonances in a cavity at 
finite frequencies, but the frozen modes or waves we consider here 
are purely static. As a result of these interferences, the effective 
spring constant of a metamaterial beam can oscillate with respect 
to the beam length12, whereas ordinarily, the spring constant scales 
inversely with beam length. This ordinary behaviour is only recovered 

if beam length exceeds around twice the decay lengths of the frozen  
evanescent modes12.

Mathematically, frozen evanescent modes are special solutions of 
differential equations with spatial derivatives up to the second order. 
Therefore, they can arise in many different physical systems101–103. An 
example quite different from elasticity is electric conduction. In an 
electric metawire (Fig. 2h) with nonlocal connections38, the resist-
ance between two points on the wire does not scale proportional to 
distance38, but again oscillates like the spring constant of a metamate-
rial beam12 discussed earlier. We expect anomalous thermal conduc-
tion to behave analogously in the presence of nonlocality. However, 
diffusion-type problems105 are generally not mathematically equivalent 
to elasticity106.

The concept of frozen evanescent modes is a general approach to 
understand and determine characteristic lengths in static problems107. 
In generalized effective-medium descriptions of elasticity, character-
istic lengths have been investigated for many years108–110, but there was 
no systematic approach how to extract them from a known periodic 
microstructure. Examples include the push-to-twist coupling in 3D 
chiral materials40,111,112, the stretch-to-bending coupling in 2D chiral 
metamaterials113,114 and metamaterials with anomalous stretching 
behaviours115,116.

Chirality
As discussed in the introduction (equation (6)), for achiral media, by 
spatial symmetry, only even-order terms occur in the dependence on 
wavenumber k. In the presence of chirality, even and odd terms can 
occur, enhancing the possibilities of designing dispersion relations of 
waves in metamaterials. However, in the presence of time-reversal 
symmetry and for passive systems, the dispersion relations ω(k) 
(Fig. 5a) must be symmetric with respect to the wavenumber k (ref. 5). 
Therefore, bands containing odd-order terms of k must occur as 
pairs ω k C C k C k C k( ) = ± + ± + …±

2
0 1 2

2
3

3 , with constants C C, …0 1  (Fig. 5b). 
Note that for classical waves, the squared frequency ω 2 plays a similar 
role to energy (equation (6)) for quantum systems. Each of the two 
bands alone has no inversion symmetry, ω k ω k(− ) ≠ (+ )+ + . How-
ever, the two bands combined satisfy time-reversal symmetry: 
ω k ω k ω k ω k( (− ), (− )) = ( (+ ), (+ ))+

2
−
2

−
2

+
2 . This behaviour holds for the low-

est bands (for example, acoustic phonons) and for higher bands (such 
as optical phonons). The odd-order terms result in frequency splitting 
between the two bands ω k ω k( ) − ( ) ≠ 0+ − , leading to unique nonlocal 
properties that cannot be achieved with the two approaches discussed 
thus far117–123.

Optical activity and acoustical activity. Optical activity results from 
the frequency splitting between the two lowest transverse bands in 
chiral optical media7. The waves corresponding to these bands are 
circularly polarized left-handed and right-handed electromagnetic 
waves. Their phase velocities are different owing to the discussed fre-
quency splitting. This difference gives rise to the phenomenon of opti-
cal activity, for which the polarization direction of a linearly polarized 
incident transverse electromagnetic wave gradually rotates as it propa-
gates through the chiral material7. The counterpart of optical activity 
for acoustic waves (or phonons) in solids is acoustical activity117,120, 
where two circularly polarized transverse elastic waves replace the 
electromagnetic waves.

Although optical activity and acoustical activity are generally weak 
in natural chiral materials, they can become very large in metamateri-
als118,119. Suppose we Taylor-expand the two dispersion relations 
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Fig. 5 | Frequency splitting resulting from chirality. a, The squared frequency 
dispersion ω k( )2  of a passive achiral system only contains even-order terms in k. 
b, Bands for chiral systems can exhibit odd-order terms in k, but must occur in 
pairs according to ω k C C k C k C k( ) = ± + ± + …±

2
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2
3

3  owing to time-reversal 
symmetry. Chirality leads to a weak quadratic frequency splitting ω ω k| − | ~+ −

2 
between two chiral bands starting from zero frequency (part c), or stronger linear 
splitting ω ω k| − | ~+ −  between two higher bands (part d).
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according to ω k C k C k( ) = ± + …±
2

2
2

3
3 , as they start from the zero fre-

quency and cannot be negative. The frequency splitting is at most of 
second order, ω k ω k k( ) − ( ) ~+ −

2  (Fig. 5c). Nevertheless, artificially 
designed metamaterials can exhibit orders of magnitude stronger 
chiral effects, such as tens of degrees change in the polarization direc-
tion over a single metamaterial lattice constant120. Natural chiral crys-
tals and most chiral metamaterials are highly anisotropic and only 
support purely circularly polarized eigenmodes along selected high-
symmetric directions. For specially designed metamaterial crystals, 
degeneracies can be enforced by design122,123, and for quasi-crystalline 
metamaterial lattices, isotropy is enforced on average121. Both 
approaches allow obtaining purely circularly polarized eigenmodes 
for all wave propagation directions in 3D space.

Both optical activity and acoustical activity have been success-
fully modelled by effective-medium descriptions124,125. In optics, 
cross-coupling parameters or chiral parameters can be introduced into 
the constitutive matrix that couples (D, B) and (E, H) to model optical 
activity125. For elasticity, one choice is to use a wavenumber-dependent 
Cauchy elastic tensor124, again corresponding to spatial dispersion. An 
alternative and more suitable approach is to use micropolar continuum 
theory126, which assigns additional microrotation degrees of freedom 
to each material point in addition to the usual translational degrees 
of freedom. In this case, acoustical activity is modelled by similar 
cross-coupling terms in the constitutive matrix as in optics. For both 
optics and acoustics, the magnitude of the cross-coupling parameters 
is bounded by the main-diagonal terms in the constitutive matrix, 
resulting from the requirement of positive energy126. A third choice 
is Willis effective-medium theory, in which momentum and stress are 
coupled with strain and velocity127–129.

A chiral effect that has no counterpart in optics is the push-to-
twist coupling in chiral elastic solids40, which stems from the 
chirality-induced coupling between a twist mode and a longitudi-
nal mode. The latter is generally absent in electromagnetic materi-
als. Micropolar effective-medium theory can also model this chiral 
effect126.

Chirality-induced frequency splitting for higher bands. For higher 
bands, the chirality-induced frequency splitting can be more pro-
nounced than for the lowest bands125. Starting from the expansion 
ω k C C k C k( ) = ± + + …±

2
0 1 2

2 , we see that a linear (rather than quadratic) 
frequency splitting according to ω k ω k( ) − ( ) ~ |k|+ −  is expected. For 
small wavenumbers, one band has a negative group velocity, and the 
other a positive group velocity (Fig. 5d). This offers a route for obtain-
ing negative refraction, as first discussed in optics130–132. For mechan-
ics, yet more pronounced effects were suggested based on micropolar 
elasticity133. Here, the higher optical phonon bands split owing to 
chirality and hybridize with the acoustic phonons, leading to a roton-
like dispersion relation of the lowest bands133. Corresponding meta-
materials have been designed and studied134. In this structure, the 
nonlocal couplings are directly visible by the rods marked in red in 
Fig. 2g. It is presently not clear whether such pronounced effects of 
chirality and nonlocality can also be obtained in optics. In fluids, such 
as air or water, only longitudinal acoustic waves are supported, but 
no transverse waves. Therefore, not all of the above can simply be 
translated. However, effective transverse air sound in metamaterials 
can be achieved by using dipole modes to mimic transverse displace-
ments in solids135. Furthermore, negative refraction resulting from 
the chiral splitting of higher bands can be achieved for airborne 
sound135.

Time dependence
Metamaterials generally rely on intentional material inhomogeneity 
in space to manipulate waves136,137. Recently, it has been pointed out 
that material inhomogeneity in time can also be harnessed to control 
waves138–140. Here, material properties can experience step-like changes 
in time141. Interestingly, this approach can also lead to nonlocal 
behaviour142. A simple example is the propagation of an optical pulse 
in a homogeneous material with an electric permittivity, ε0, that 
changes to a different value, ε t ε( ) ≠ 0 , in a very short-time interval, 

t τ0 < <  and then changes back to ε0. At the two temporal interfaces of 
t = 0 and t τ= , the pulse is partially reflected and partially refracted, 
similar to the reflection and refraction of a pulse at a spatial interface 
separating two media. This effect has been referred to as time reflection 
and time refraction142. It should be noted that, at a spatial interface, the 
frequency is conserved and the wavenumber changes, whereas the 
opposite holds true at a temporal interface141. Interference occurs 
between the time-reflected and time-refracted signals at the two tem-
poral interfaces, leading to a wavenumber dependence of the total 
reflection and refraction coefficients. This dispersive response depends 
on the duration τ of the modulation and the modulation shape (dis-
continuous or smeared step)142. This behaviour resembles the propaga-
tion of a wave through a slab of time-independent material exhibiting 
nonlocality143.

The main technical challenges for experiments are three aspects, 
particularly for optical signals: the abrupt change of material proper-
ties must be large; the jump of the material properties should be quick, 
at least comparable with the period of the waves; the modulation must 
be well synchronized throughout the medium. At present, microstrip 
lines for radiofrequency waves constitute a suitable platform144. The 
available control frequency has increased from tens of megahertz to 
sub-gigahertz by using optically controlled picosecond-switchable 
photodiodes145. Acoustic or elastic experiments in the sub-kilohertz 
frequency range are also beginning to emerge146,147.

Nonlocal metasurfaces
A metasurface can spatially and temporally shape waves that impinge 
on it from air or another medium, which are reflected or transmitted. 
The metasurface acts like a generalized phase plate148–150 or a general-
ized diffractive optical element151. Unlike for the metamaterials dis-
cussed earlier, the units of a metasurface are not necessarily arranged 
periodically. To accomplish wavefront shaping, the wave must locally 
acquire a phase shift between 0 and 2π, equivalent to a thickness 
between zero and one wavelength. However, as the wavelength is not 
a preserved quantity, it may be (much) smaller than the wavelength 
in the outside medium. The community therefore often speaks about 
‘sub-wavelength’ thicknesses or ‘flat’ optics150. This approach has 
achieved various interesting functions, including anomalous beam 
deflections following a generalized version of Snell’s law152 and focusing.

Metasurfaces are often local in the sense that their unit cells are 
designed independently under conditions for which the interaction 
with neighbouring unit cells is negligible, which corresponds to ignor-
ing the effects of spatial dispersion. This assumption does not only 
decrease the efficiency of local metasurfaces but also limit the possibili-
ties of controlling waves19. For example, to deflect an incident beam by 
a large angle with 100% energy efficiency, the local transmission cannot 
be 100% everywhere along the metasurface153. Energy flow in directions 
parallel to the metasurface is inevitable for perfect transmission154,155, 
which means nonlocality is a must. Interestingly, this restriction can 
be relaxed for curved metasurfaces156. In principle, all metasurfaces 
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exhibit a finite degree of nonlocality as the scattering of the unit cells 
cannot be ideally localized19. By deliberately exploiting and enhancing 
nonlocal interactions, metasurfaces allow to perform more complex 
functions19, such as taking spatial derivatives of incident images157.

As nonlocal metasurfaces for optics and acoustics have been 
covered in recent reviews18–20, we focus on recent progress here. In the 
following, we introduce nonlocal metasurfaces according to two differ-
ent mechanisms, namely, leaky-wave modes and physical couplings. 
Leaky-wave modes have mainly been used in optics, whereas physical 
couplings have been exploited in acoustics and elasticity.

Leaky-wave modes
Leaky-wave modes are localized in the direction perpendicular to the 
metasurface but are extended within the plane of the metasurface158, 
thereby laterally coupling unit cells of the metasurface (Fig. 6a). We 
point to the analogy to zero modes in nonlocal metamaterials dis-
cussed earlier (Fig. 4a). Various approaches to control nonlocality and 
leaky-wave modes have been covered in two previous reviews18,19. More 
recently, nonlocal couplings have also been tailored by adjusting the 
unit-cell period159 (Fig. 6b) or tuning the height of plasmonic scatters160.

Generally speaking, nonlocal metasurfaces exhibit wavenumber- 
dependent transmission, enabling more powerful functions than beam 
deflection19. A prominent example is to perform spatial derivatives 

of incident images, enabling fast and energy-efficient image (pre-)
processing19, for example, for edge detection. Another example is to 
compress the space between lenses in optical systems, leading to more 
compact optical devices161–163. A recent example is the combination of 
spatial differentiation and temporal differentiation164,165. Here, the non-
local metasurface is activated only when signals change substantially 
in time, thus achieving event-based processing166.

The high frequency selectivity of nonlocal metasurfaces167 is 
another advantage compared with more traditional phase masks. This 
means that a designed function works only at a targeted frequency or 
in a narrow frequency range168 (Fig. 6c). This frequency selectivity is 
attractive for augmented reality169, where visible light from the environ-
ment can perfectly pass through a metasurface. By combining the leaky 
modes of different nonlocal metasurfaces, multiple images at selected 
colours can be superimposed onto the environment.

Physical coupling
Nonlocal interactions for acoustic and elastic metasurfaces are more 
often achieved by physical connections20, which are quite similar to 
what we discussed for nonlocal metamaterials (Fig. 2a–e). This strat-
egy inevitably complicates the structure design to support nonlo-
cal couplings in the plane of the metasurface170 (Fig. 6d). Yet, this 
has been the main approach to design various nonlocal acoustic and 
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Fig. 6 | Nonlocal metasurfaces. a, Nonlocality for optical metasurfaces mainly 
results from leaky-wave modes (red) propagating within the metasurface plane. 
Incident and reflected light is shown in black. b, A simple method of tuning 
nonlocal coupling is to vary the unit cell size. White scale bars, 500 nm. Part b 
adapted with permission from ref. 159, AAAS. c, A local metasurface (left panel) 
focuses waves with low frequency selectivity. A nonlocal optical metasurface 
(right panel) can focus light selectively only for a targeted narrow frequency 
range. The conversion efficiency can be enhanced by Huygens’ nonlocality. 
Part c adapted from ref. 168, Springer Nature Limited. d, A nonlocal mechanical 

metasurface based on beyond-nearest-neighbour couplings. The left top panel 
is a schematic of the metasurface unit cell (left bottom panel). Right panel is a 
metasurface composed of multiple unit cells. Bottom left panel and right panel 
of part d adapted with permission from ref. 170, PNAS. e, Nonlocal couplings 
in acoustics can be directly realized via radiative coupling between acoustic 
waves transmitted through different holes in a screen. The right panel shows an 
ultra-thin nonlocal acoustic metasurface based on a perforated plate. Right panel 
of part e is adapted from ref. 176, CC BY 4.0.
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elastic metasurfaces171–175. For underwater metasurfaces, nonlocality 
is often inevitable owing to strong coupling between the water-borne 
sound and the components of the metasurface, even without physical 
channels to couple different unit cells173,176.

Generally, it is fair to say that the development of nonlocal meta-
surfaces for acoustics and elasticity lags behind their optical counter-
part. Typical functions such as anomalous reflection, beam splitting or 
focusing have been demonstrated20. A more recent application is a non-
local acoustic hologram173,176, which can potentially be used for particle 
or cell manipulation and trapping. Here, the wave transmitted through 
a metasurface forms a desired field pattern at an image plane. Instead 
of using channels to couple the metasurface unit cells, nonlocality can 
solely arise from radiative coupling between transmitted waves at dif-
ferent locations176 (Fig. 6e). This type of coupling has been exploited to 
design ultra-thin nonlocal metasurfaces based on perforated plates176. 
Nonlocal interactions can be further enhanced by using the vibration 
of the thin perforated plate itself, particularly for underwater sound173. 
Further examples of nonlocal metasurfaces for acoustics and elasticity 
are emerging, such as performing nonlocality-enabled spatial deriva-
tives with elastic waves174 or using nonlocal metasurfaces for hyperbolic 
wave propagation177.

Outlook
Local metamaterials and metasurfaces1,2,150 have long exploited 
frequency-dependent effective responses to control and manipulate 
electromagnetic, elastic and acoustic waves. Frequency depend-
ences inherently come with fundamental restrictions owing to the 
Kramers–Kronig relations, arising from causality178. Nonlocal metama-
terials and metasurfaces additionally exploit wavenumber-dependent 
effective responses. Translated from reciprocal space to real space, 
this means that one must design, control and enhance the strengths 
of nonlocal couplings between the unit cells or building blocks of 
metamaterials and metasurfaces. In this Review, we have summarized 
different approaches in different classical systems to achieve such 
coupling control.

Interestingly, nonlocality also represents a path towards control-
ling strictly static effective behaviours of metamaterials via frozen 
evanescent waves with anomalously long spatial decay lengths12. Such 
characteristic decay lengths have previously been discussed — for exam-
ple, in the framework of generalized effective-medium elasticities —  
but have remained somewhat obscure and without any connec-
tion to the dynamic band structure of the effective medium. Frozen  
(or zero-frequency) evanescent Bloch waves arising from pronounced 
nonlocality even reach into diffusion problems such as electrical 
conduction and Ohm’s law, which are not usually associated with waves.

Combining controlled nonlocality with non-Hermitian systems 
or with non-reciprocal systems may enable further unusual or exotic 
behaviours such as fundamentally different versions of the skin 
effect179. One often wishes to reduce the system thickness to a mini-
mum, for example, for applications in mobile phones, but there is a 
limit to how thin functional devices can be. Recently, the concept of 
overlapping nonlocality has been identified as the key reason for the 
finite minimum thickness of optical systems targeting specific opti-
cal functions180. Although the connection is not perfectly clear yet, 
recent theoretical studies181,182 suggest that nonlocal metamaterials and 
metasurfaces may make a distinct contribution to thin and therefore 
compact optical systems in the future, perhaps also including optical 
neural networks183.
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Glossary

Characteristic length scales
For sample sizes much larger than 
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