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Abstract

Sections

The aim of rationally designed composites called metamaterials or
metasurfacesis to achieve effective properties that go beyond those

of their constituent parts. For periodic architectures, the design can
draw on concepts from solid-state physics, such as crystal symmetries,
reciprocal space, band structures and Floquet-Bloch eigenfunctions.
Recently, nonlocality has emerged as a design paradigm, enabling
both staticand dynamic properties that are unattainable with a

local design. In principle, all material properties described by linear
response functions can be nonlocal, but for ordinary solids, local
descriptions are mostly good approximations, leaving nonlocal effects
as corrections. However, metamaterials and metasurfaces can be
designed to go far beyond local behaviour. This Review covers these
anomalous behaviours in elasticity, acoustics, electromagnetism,
optics and diffusion. In the dynamic regime, nonlocal interactions
enable versatile band structure and refraction engineering. In the static
regime, they resultinlarge decay lengths of ‘frozen’ evanescent Bloch
modes, leading to strong size effects. For zero modes, the decay length
diverges.

Introduction

Nonlocal metamaterials

Nonlocal metasurfaces

Outlook

'Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. 2Institute of Applied
Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. 3Laboratory of Wave Engineering, Ecole
Polytechnique Fédéral de Lausanne (EPFL), Lausanne, Switzerland. “Institut de Mathematiques de Toulon,
Universite de Toulon, Toulon, France. °School of Aerospace Engineering, Beijing Institute of Technology (BIT),
Beijing, China. [</e-mail: yi.chen@partner.kit.edu; martin.wegener@kit.edu

Nature Reviews Physics | Volume 7 | June 2025 | 299-312

299


http://www.nature.com/natrevphys
https://doi.org/10.1038/s42254-025-00829-1
http://orcid.org/0000-0002-6614-976X
http://orcid.org/0000-0002-9486-6854
http://orcid.org/0000-0002-9770-2441
mailto:yi.chen@partner.kit.edu
mailto:martin.wegener@kit.edu
http://crossmark.crossref.org/dialog/?doi=10.1038/s42254-025-00829-1&domain=pdf

Review article

Key points

o Metamaterials are rationally designed composites with effective
properties that go beyond their constituents. Following this definition,
metamaterials include photonic and phononic crystals.

o (Meta)material response functions can be phenomenological or
result from a theoretical homogenization procedure. For nonlocal
materials, the response function at a given location depends not only
on the field at that location but also on the field at other locations.

o We review nonlocal metamaterials for diverse physical fields
according to three unified physical mechanisms to incorporate
nonlocality, that is, beyond-nearest-neighbour interactions, chirality
and delocalized zero modes.

e The nonlocal mechanisms mentioned earlier can lead to interesting
wave properties, such as roton-like dispersion, topological insulators
with large winding number, chiral eigenmodes and frequency splitting
and anomalous dispersion cones.

o Nonlocality also induces static properties with anomalously large
characteristic lengths, connected to frozen evanescent modes
(evanescent Bloch modes at zero frequency) emerging from local
minima on dispersion relations.

e Time dependence is introduced as a separate and emerging
method to achieve nonlocal responses in metamaterials, that is, the
time-reflection coefficient and time-refraction coefficient become
spatially dispersive or wavenumber-dependent.

¢ Nonlocal metasurfaces often use leaky-wave modes or physical
coupling to build nonlocal interactions in metasurfaces, enabling high
frequency selectivity or performing spatial derivatives on incident
wave fields.

Introduction

Natural materials composed of atoms and artificial materials — meta-
materials — composed of tailored building blocks or ‘meta-atoms”™
formthe basis for any kind of device and systemin electronics, mechan-
ics, acoustics and photonics. In the process of designing devices such
as computer chips, mechanical support structures, acoustic insulation
or photoniccircuitry, one needs specific macroscopic descriptions of
the (effective) response functions of the involved (meta)materials.
Theseresponse functions can be phenomenological or can arise from
atheoretical homogenization procedure and include the electric con-
ductivity, the Young’s modulus, the compressibility or the optical
permittivity in their special local form?™*. One example of a local
response functionis the microscopic form of the static version of Ohm’s
law j=oF (ref.5). The current density j=/(x) at position x is propor-
tionaltotheelectricfield £ = E(x) at the same position and the conduc-
tivity 0 # o(x) is constant for ahomogeneous material. Other examples
include Hooke’s law of elasticity and its generalizations in continuum
mechanics*®, Fick’s first law of diffusion*, Fourier’s law of heat
conduction® as well as magnetic and electric susceptibilities in elec-
tromagnetism and optics’. Locality hasimmediate consequences. For
the macroscopic form of Ohm’s law, the resistance R «< L of a wire is

simply proportional to the length of the wire L, because one candecom-
pose the wire into a set of resistors in series, each of which follows a
local version of Ohm’s law. This simple behaviour forms the basis for
resistive touch screens.

Nonlocalresponses coveramuchbroader class of behaviours®, con-
taining local responses as special cases. For example, in one dimension,
the nonlocal form of Ohm’s law is defined by

Jjeo=_J 0'tc=xE(x)dx. 8

Fromequation (1), we see that the current density j(x)atlocation
x depends on the electric field £(x’) at many other locations x” # x by
a mathematical convolution with the nonlocal electric conductivity
o’(x-x’). For the special case of 6’(x —x’) =0 6(x~-x’), with 6 being
the Dirac Delta function, a local response is recovered. By Fourier
transformation of the nonlocal form, we obtain

J (k) = 6(k)E(k) )

viathe convolution theorem®. Herein, the conductivity (k) explicitly
depends on the spatial frequency or wavenumber k. Such behaviour
is often referred to as spatial dispersion’, which is directly linked to
nonlocality.

Let us consider the special case that we can expand the function
6(k) in equation (2) in a Taylor series as (k) = g, + $1k1+ €2k2+ E3k3...,
with coefficients §, &, .... Insert this expansion into equation (2)
and Fourier transform back to real space with, for example,
kE(k) » —idE (x)/dx (ref. 5), leads to the form

d’FE . dE _d'E

j(X)ZO'OE(X)—iglgfi—%?*'i%?—a‘w*'.... 3)

We canalso equivalently reformulate equation (3) to aset of cou-
pled first-order equations by introducing auxiliary quantities
a(x) (j=1, 2...):

JX) =00 E(x) —i§a;(x) - §a,(x) + ...

al(x) = ds;X) (4)

We see that we can express nonlocality mathematically in at least
four different ways: in terms of a spatial convolution integral (equa-
tion (1)), asawavenumber dependence (equation (2)), as higher-order
spatial derivatives (equation (3)) or as a set of coupled first-order
equationsinequation (4). We will see below that all four ways generally
lead to anomalous behaviour such as size effects and characteristic
length scales.

For materials that exhibit chirality’, which is defined by the lack of
acentre of inversion, the absence of mirror planes and the absence of
rotation-reflection symmetries, the odd-order and even-order terms
can generally be non-zero. For achiral media, the odd-order terms are
zeroby crystalsymmetry,0=§=§=§=....

Itis generally demanding to derive the aforementioned phenom-
enological nonlocal descriptions from the microscopic Hamiltonian
of asystem. Nevertheless, it is instructive to discuss a simple exam-
ple model that leads to nonlocal behaviour: in equation (5), we
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consider a 1D tight-binding Hamiltonian H in matrix representation
with local energies £, and wavefunctions ¢, =¢,(x-na) with
n=-«,.,-1, 0, +1,..., +~. These wavefunctions are localized at
sites x=Xx,,= na, in which a is the period or lattice constant. V; shall be
the interaction energy between theimmediate neighbours to the left
(-)andtheright (+), thatis, thelocal interaction. V, shall be the interac-
tion energies with the £Nth nearest neighbours (withN=2, 3,...), that
is, the nonlocal interactions. From this Hamiltonian

we obtain the (real-valued) eigenenergies E = iiw of the Bloch
wavefunctions versus wavenumber k

E(k)=Ey+2 Y Vycos(Nka). (6)
N=1

Fromequation (6), itisimmediately clear that this energy disper-
sionrelation is aninfinite Fourier series with Fourier coefficients 214,
allowing to Fourier-synthesize any wanted behaviour for £(k) within
the first Brillouin zone k € [-1r/a, + m/a], at least in principle. By con-
trast, without nonlocalinteractions, thatis, forV, = V3= .. = 0,wealways
get the simple cosine shape E(k) = £, +2V,cos(ka). The dispersion rela-
tion or band structure in equation (6) describes propagating Bloch
waves with real-valued k as well as Bloch waves with complex-valued k,
for which the wavelength at a given kis 1 = |21t/(Re(k))| and the expo-
nential decay length is given by [ = [1/Im(k)|. We refer to the latter as
evanescent waves evenif Re(k) # 0. Examples of evanescent Bloch waves
atfinite frequencies are surface waves, which sometimes have a topo-
logical origin® . There also exist evanescent Bloch waves at zero fre-
quency (theso-called frozen evanescent waves)™. Furthermore, there
are non-Bloch solutions at finite frequencies and zero frequency'>".

We note in passing that the physics and the notion of nonlocal
interactions become less clear if we use a larger or extended unit cell
instead of the primitive cell or Wigner-Seitz cell'. In this case, nonlo-
cal interactions turn into particular inner degrees of freedom within
the extended unit cell. Of course, the nonlocal material properties
discussed earlier donot depend on the choice of the unit cell — whichis
why we have defined nonlocality on the basis of the macroscopic mate-
rial properties rather than on the basis of the microscopic structure of
the (meta)material.

For atomic materials and crystals, the long-range Coulomb inter-
action between electrically charged particles introduces nonlocal
interactions, but we cannot engineer the nonlocal coefficients 2V,
at will. Nature has done that. Nevertheless, nonlocal effects can be
important in atomic materials®. The situation is different for nonlo-
cal metamaterials. Here, quantum mechanics is usually not directly
relevant. We can replace the quantum-mechanical wavefunction by
a classical pressure field, a displacement field, an electric or a mag-
netic field. This aspect has been extensively discussed in a recent
roadmap'. The interactions, analogous to the energies V, in equa-
tion (5), can be designed and realized by periodically arranging pipes
(acoustics), rods (elasticity), waveguides (optics and elasticity), cables
(electromagnetism) or wires (Ohm’s conduction) in real space. Math-
ematically, nonlocality cannot appear instrictly 1D microstructures”.

Onetherefore needs 3D microstructures to avoid unwanted crossings
of the connecting elements — even if one only targets a 1D periodic
metamaterial architecture, as showninFig. 1a.

ThisReviewis structured into nonlocal metamaterials and nonlo-
cal metasurfaces. Both are always structures in 3D space and may be
periodic along one, two or three directions. What is different is the
spirit. For metamaterials, the aim is to tailor the behaviour of waves
inside the metamaterial. One grasps that behaviour by band struc-
tures and Floquet-Bloch eigenfunctions. Under suitable conditions,
approximate effective-medium descriptions in terms of equivalent
continua may apply. We cover elasticity, acoustics, electromagnetic
waves and electric conduction (a diffusion-type problem), but struc-
ture this part according to the mechanisms giving rise to nonlocality:
beyond-nearest-neighbour interactions, chirality, delocalized zero
modes and time dependencies. For metasurfaces, the aimis to engineer
thedirection, polarizationand amplitude of waves outside the metas-
urface emerging by anomalous effective refraction or reflection from
the metasurface, seen asathinslab of material. Here, nonlocality means
that the reflection or refraction at one position x of the interface not
only depends onthe metasurface properties at that positions but also
onthepropertiesat many other positions x’ within the 2D metasurface.
Nonlocal metasurfaces for optics and acoustics have recently been
reviewed in detail'®?°. Therefore, we do cover nonlocal metasurfaces,
but emphasize recent progress with respect to refs. 18-20.

Nonlocal metamaterials

InFig.2, wedepict several examples of nonlocal metamaterials, which
areallbased on the three mechanisms we will discussin the following.

n+1

Fig.1|Illustration of nonlocal interactionsina tight-binding model. a, 1D
system with period a and nonlocal interactions. V, represents local interactions
between nearest-neighbour sites (for example, nand n + 1), whereas V,and V;,
stand for nonlocal interactions between two sites separated by a distance of 2a
and 3a, respectively. For clarity, only four such nonlocal interactions are shown.
b, Corresponding 2D nonlocal system.
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The first and perhaps most straightforward way to introduce strong
nonlocality following Fig. 1is to couple metamaterial unit cells with
their beyond-nearest-neighbours via physical components (Fig. 2a-e).
This concept has been successfully realized for elastic waves® ', acous-
tic waves® ™, radiofrequency electromagnetic waves®***” and electric
conductionin metawires® (Fig. 2h). Alternatively, pronounced nonlo-
calinteractions can be effectively achieved in metamaterials (Fig. 2f)
by leveraging a special type of zero modes, called delocalized zero
modes™®. We will explain in detail the mechanism later. Furthermore,
structures thatare chiral (Fig. 2g) can exhibit unique nonlocal responses
impossible to achieve with achiral metamaterials*>~*2, Here, chirality’
means the absence of acentre ofinversion, the absence of mirror planes
andthe absence of rotation-reflection symmetries of the metamaterial
crystal. We discuss these three types of nonlocal mechanisms in the
following three sections.

Beyond-nearest-neighbour interactions

Equation (6) states that a metamaterial can be expressed by a Fourier
series, and one can therefore realize any analytical function or disper-
sionrelation E(k) by tailoring the strength of the nonlocal interactions
of different orders. Experimentally, these interaction strengths canbe
controlled by the connecting elements, as shown in Fig. 2a-e.

Roton-like dispersion relations. In elasticity, when only local interac-
tions are present, one gets the textbook acoustic dispersion relation
w(k)e<|sin(ka/2)| with only one Fourier component*. Dispersion rela-
tions that contain two Fourier components resemble the roton disper-
sionof sound insuperfluid Helium-4 (ref. 43). For smallwavenumbers k,
theroton dispersion relation starts as w(k) = |k|, followed by amaximum
(the ‘maxon’), aminimum (the ‘roton’) and a rise towards the edge of
thefirst Brillouin zone. Richard Feynmaninterpreted the minimum as
arising from a quasiparticle, namely, the rotation of a group of local
atoms**.In1965, the roton dispersion relation in Helium-4 was verified
experimentally by inelastic neutron scattering®, but over the years,
further experiments and theoretical developments have refined the
roton dispersionin Helium-4 (ref. 46).

Similar dispersion relations have been discussed and observed
invarious other correlated quantum systems at low temperature*”*.
In classical metamaterials, roton-like dispersion relations have
been obtained under ambient conditions®***. The physics for the clas-
sical case can be understood from a nonlocal mass-and-spring
model (Fig. 3a). To obtain two Fourier components, we consider
two types of springs: one with spring constant K for the nearest-
neighbour connections (‘local’) and the other one with spring constant
K, for connection (‘nonlocal’) between Nth nearest neighbours
(with N=3 in Fig. 3). This leads to a dispersion relation follow-
ing w? = (K,/m)sin®(ka/2) + (K3/m)sin?(3ka/2), which is illustrated in
Fig.3b.Itexhibits aroton-like minimum at k= 2r/(3a) for sufficiently

strongnonlocal interactions. Thisanomalous behaviour canbe inter-
preted as arising from the hybridization of two ordinary phonon
dispersionrelations®. It leads to several unusual and interesting prop-
erties, including triple refraction owing to three coexisting Bloch
states at the same frequency and broadband negative refraction® —
theoretically at strictly zero loss*°. Furthermore, for the wavenumber
range with negative group velocity, the energy flow through the third-
order nonlocal springs becomes negative®. In the limit of K;/K; > e,
the roton-like minimum approaches zero frequency, leading to a
delocalized zero mode, which is discussed subsequently.

The nonlocal strategy based on two Fourier components has
been experimentally verified on different physical platforms, includ-
ing elastic*?, acoustic**** and radiofrequency systems* with elastic
rods, acoustic channels or bayonet-Concelman (BNC) coaxial cables
(Fig. 2a-e) coupling to beyond-nearest-neighbours. A stringent
requirement is that the rods or channels that mediate nonlocal inter-
actions must not overlap with each other, otherwise the interaction
scheme is completely altered®. Periodic implementation with this
constraint is more difficult in two® (Fig. 2d,e) and three dimensions™
than in one dimension®. Anomalous refraction, however, requires
two or three dimensions®’. Nonlocal interactions can also be induced
through active feedback circuits, with the advantage of tunability via
anexternal control parameter*’.

The effective-medium theory of nonlocal systems has been inves-
tigated in many studies, particularly starting from simple discrete
models®™**, but higher-order differential equations or fractional
differential equations have also been proposed®~°. Although most
of these studies assumed only small deviations from local behav-
iour, the roton-like dispersion relation is connected to stronger
effects of nonlocality®. This behaviour has successfully been cap-
tured qualitatively by effective-medium descriptions based on a
higher-order differential equation with spatial derivatives up to the
sixth order?. The effective-medium theory also qualitatively con-
firmed wave transmission through a nonlocal metamaterial slab”,
including bound sates in the continuum®® that result from three
coexisting Bloch states.

New avenues for topological physics. Beyond-nearest-neighbour
interactions do not only change the dispersion relation of the low-
est band but also lead to unusual topological properties of higher
bands®. Anexampleis the extended 1D Su-Schrieffer-Heeger (SSH)
model, which includes third-order nonlocal interactions (Fig. 3c).
Interestingly, the established approach based on the Zak phase*
no longer correctly captures the topological properties of the
system®. Instead, the description needs a topological winding
number®. In contrast to a winding number of one in the standard
SSH model, the extended SSH model can have a winding number of
two (Fig. 3d), or a larger winding number if higher-order nonlocal

Fig.2|Gallery of nonlocal metamaterials based on different mechanisms.
a-e, Nonlocal metamaterials based on beyond-nearest-neighbour interactions
(Fig.1). All these structures are 3D. Parts a-c are periodic along only one
direction and the nonlocal interactions are mediated by rods, beams or
bayonet-Concelman (BNC) cables. Part ais adapted fromref.12, CCBY 4.0.
Partbis adapted fromref. 25, CCBY 4.0. Part c reprinted with permission from
ref.36, Wiley. Partsd and e are periodic along two directions. The blue and red
cylindersin partdrepresent third-order and fifth-order nonlocal interactions,
respectively. The insetin part e highlights the nonlocal couplings by channels for
sound. Partdis adapted fromref. 32, CCBY 4.0. Part e is adapted fromref. 33,

CCBY 4.0.f, Nonlocal metamaterial based on delocalized zero modes. The

left panel shows afinite 2D periodic structure, and the right panel shows one
ofitsunitcells. Part fadapted with permission from ref. 39, APS. g, Nonlocal
metamaterial based on chirality. The cross-shaped rods (one highlighted in red)
couple the structure in a chiral manner and also mediate beyond-nearest-
neighbour interactions. Part g adapted with permission fromref. 134, Wiley.

h, Electric metawire with the same mechanism as in parts a-e but for nonlocal
electric conduction. Thick and thin enamelled copper wires are electrically
connected at soldering points (see the enlarged view at the bottom).

Parthis adapted fromref. 38, CCBY 4.0.
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interactions are involved®. As a result, more edge states emerge.
When calculating the number of domain-wall states between two
topological phases, the winding number fails, and one needs to
use the Berry connection or Jackiw-Rebbi index®. In 2D systems,
beyond-nearest-neighbour interactions canalsolead to anincreased
number of interface states and Dirac cones®?. Furthermore, nonlocal

interactions can enable specific higher-order topological states,
such as OD corner states® %, This has been observed in photonic
kagome lattice of dielectric cylinders®*. The corner states can only
be explained if the next-nearest-neighbour couplings are accounted
for in a tight-binding model®*. Yet, more complex behaviours are
expected for higher-order nonlocal interactions.
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Fig.3|Beyond-nearest-neighbouring interactions for tailoring dispersion
bands and topological properties. a, A 1D mass-and-spring model with nonlocal
interactions for roton-like bands. Each mass (grey circles) is coupled to their
immediate neighbours by springs (blue lines), with spring constant K;, as well as
to their third-nearest-neighbours by springs (red lines), with spring constant K.
b, Phonon bands for the nonlocal model in part a. Roton-like band, featured with
alocal minimum on the band, is obtained for strong nonlocal interactions.
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Partaisadapted fromref. 21, CCBY 4.0. ¢, Extended Su-Schrieffer-Heeger
tight-binding model with third-order nonlocal interactions (red and yellow lines).
d, Winding numbers of the model in part cwithw, =-0.5, v, =-1.5and different
combinations of nonlocal interaction strength. A maximal winding number of 2
instead of 1 for the standard Su-Schrieffer-Heeger model can be obtained.

Part d reprinted with permission from ref. 35, APS.

Delocalized zero modes

To understand what a delocalized zero mode is and how it leads to
nonlocality, let us consider the pantographic mechanical structure®®
(Fig. 4a), which is inspired by pantographs or scissor mechanisms.
All struts (straight lines) are coupled by hinges (open blue circles)
such that an angle change on the left-hand side is transferred to the
right-hand side, whichis a highly nonlocal response. For ideal hinges
and rigid struts, this transfer requires zero energy, even over very
large distances, corresponding to a delocalized zero mode. Mathe-
matically, a delocalized zero mode is a Bloch-wave mode with a
well-defined Bloch vector k,,,, that can be excited with strictly zero
energy. Itis fundamentally different from the Guest-Hutchinson zero
modes®”'in many mechanical systems with insufficient connectivity,
such as 2D mechanical square lattices or kagome lattices composed
of masses and springs’>7*. These systems host an infinite number of
zeromodes across extended regionsin reciprocal space®. As localized
zero modes at any location can be constructed from these zero modes,
alocal perturbation cannot propagate to a distant location.

Anomalous cones. A delocalized zero mode can create an anomalous
cone atk,,,in reciprocal space (Fig. 4b), owing to the continuity of fre-
quencies versus wavenumbers. The coneisanomalousin the sense that
the zeromodeis different fromtrivial zero modes at k = 0, which repre-
sent rigid translations in mechanics or homogeneous optical fields in
vacuum. Anomalous cones can be used to achieve broadband negative
refraction even down to the static frequency range (see Fig. 4b for a
dispersionrelation and Fig. 4c for selected iso-frequency contours)®*”.
For electromagnetism, it has been shown that such behaviour cannot
be achieved forapurelylocal medium®®’®, Foranomalous cones shifted
to non-zero wavenumber, orientation-dependent coupling to an ordi-
nary background material leads to enhanced directional emission”.

Additionally, metamaterials with anomalous cones constitute a platform
for Weyl physics that is much more controllable and that makes experi-
ments easier than for atomic materials’. Spatially confined locally reso-
nant modes can become extended or delocalized through coupling via
multiple scattering or by hybridization with propagating modes. This
enablesinteresting phenomenasuch as negative refraction and topologi-
calwavebehaviours’” . However, these properties are typically limited
toanarrow frequency range close to the local resonance frequency.

Delocalized zero modes and anomalous cones have extensively
been studied in mechanics’”>. The resulting metamaterials gener-
ally rely on small tips to approximate ideal hinges (see Fig. 2f as one
example). Arecent design strategy is based on ‘oligomodal’ mechanical
metamaterials®®, which host a fixed number of zero modes irrespective
of systemssize. Amethod based ondirected graphs hasbeen proposed
to analyse these zero modes and to design anomalous cones at any
wavenumber in reciprocal space.

A second method is based on a special type of elastic materials
whose elasticity matrices have one or more zero eigenvalues® 5,
Each zero eigenvalue leads to an easy mode, or specifically to a strain
state that induces zero elastic strain energy. Elastic materials with
easy modes canberealized by solid microstructures®*°. The kagome
lattice mentioned earlier is an example”°*”", In materials with easy
deformation modes, Bloch modes along one or more wavevector
directions have zero frequency®. A single Bloch mode at an isolated
wavenumber can be obtained by supercell-induced band-folding”.
Alternatively, distortions can be introduced into these materials to
eliminate excessive zero modes’”*. This approach has been used to
achieve mechanical Weyl points, although the cone location cannot
easily be predicted and adjusted”.

Interlaced wire media have been used to obtain anomalous cones
in electromagnetism’*”, Normally, a simple cubic mesh grid of wires
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hasnodispersionband emerging from zero frequency because all wires
have the same electric potential in the low-frequency limitand only the
trivial solution of zero electric field is allowed. However, the situation
becomes drastically different for two disconnected copies of a mesh
grid, also referred to as non-Maxwellian media®. In such metamaterials,
Bloch modes starting from zero frequency occur”. The Bloch modes
originate from the potential difference between the two (or more)
mesh grids and share similarities with the propagating modes between
two parallel metal plates. The location in k-space and the number of
anomalous cones can be controlled by the connectivity of wire mesh”.
The analogy of this concept for elastic waves was discussed in ref. 13.

Frozen evanescent modes. Inreal-life metamaterials, perturbations
generally lift the zero-frequency minimum of the anomalous cones
to a minimum at finite frequencies (Fig. 4d). Thus, at first sight, no

zero-frequency modes or waves seem to occur. However, evanescent
modes with complex-valued wavenumbers still exist.

To appreciate this general behaviour, consider a local parabolic
minimum of the dispersionrelation as an example (Fig. 4d). This disper-
sion relation can be Taylor-expanded around the local minimum
Kepiry @ i) AS @ = @iy + { Ak* with > 0 and Ak = k= Ky, (refs. 98,99).
As aresult, two branches emerge from the local minimum and bend
towards lower frequency'. These two branches lead to two Bloch
modes with strictly zero frequency (dots in Fig. 4d) and complex con-
jugated wavenumbers k,,,,= Re(k,,) £ilm(k,) = Kpint i) @ min/{- These
static or ‘frozen’ Bloch modes are evanescent waves with a spatial
oscillation period of 21 /|Re(kz,)| and an exponential decay length of
[=1/Ilm(k, )| = | {/®min, Which diverges as w,,;, approaches zero fre-
quency. These additional bands and the corresponding frozen evanes-
cent modes (Fig. 4e) have been demonstrated in a nonlocal
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Fig. 4 |Delocalized zero modes for nonlocality. a, A1D pantographic structure
consists of struts (straight lines) coupled by hinges (open blue circles). For the
case of ideal hinges and rigid struts, the bottom panel depicts a delocalized zero
mode of the structure, in which the angle between two adjacent strutsin each
unit cellincreases by the same amount. The deformation mode is a delocalized
zero mode, a Bloch mode with Bloch wavenumber k), = 0. The zero mode enables
transfer of an angle (6) change between the two left-most struts to the two
right-most struts of a finite-size periodic structure — a highly nonlocal behaviour.
For non-ideal hinges and/or non-rigid struts, the transfer of angle change is no
longer perfect, yet nonlocal behaviour persists. b, An anomalous cone,
highlighted by the green shading, naturally emerges from the wavenumber, k.,
of adelocalized zero mode. Zero group velocity (v, = 0) and negative group
velocity (y, < 0) can arise at certain wavenumber. ¢, Iso-frequency contours of the

metamaterial shownin Fig. 2f with a delocalized zero mode atk ,,= K. d, Inactual
metamaterials, the ideal anomalous cone (black line) is modified (blueline),
leading to alocal minimum (blue circle) at finite frequency. In the complex
wavenumber space, two complex-valued bands, with real-valued frequencies but
complex-valued wavenumbers, start from the local minimum, w ,;,, and lead to
evanescent modes at zero frequency (red circles) — frozen evanescent Bloch
waves, with complex-valued wavenumbers k,,, and k... The grey plane and green
plane correspond toRe(w) = 0and Im(k) = O, respectively. e, Complex-valued
band structures of the nonlocal metamaterial beam shown in Fig. 2a. Right panels
show the displacement fields for the longitudinal evanescent mode (blue circlein
part e) and torsional evanescent mode (red circle in parte). The green plane
corresponds toIm(k) = 0. Part e is adapted fromref.12, CC BY 4.0.
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metamaterial beam™. The frozen evanescent modes (Fig. 4¢) clearly
show spatially oscillatory and exponentially decaying profiles.

Such frozen evanescent modes emerging from some local
minimum in the dispersion relation are common for crystals and
metamaterials'®°'%>, However, they are often not relevant for two rea-
sons. First, their decay lengthis often extremely short and on the scale
of one period or lattice constant of the system. This means that only
the last atoms or meta-atoms at the edge of the sample are affected.
Second, the corresponding spatial modes may be complicated and
exhibitintricate spatial distributions, such that one cannot couple to
these modes under ordinary conditions.

By contrast, frozen evanescent modes with large decay lengths
canleadto pronounced anomalous static responses reaching deep into
thebulk of asample'. For example, when stretching an ordinary elastic
beam with finite length, the displacement simply increases linearly
from one end to the other. In sharp contrast, nonlocal metamaterial
beams can exhibit strong spatial oscillations arising from frozen eva-
nescent phonon modes'™. The resulting displacement fields depend on
the boundary loading, leading to a violation of Saint-Venant's principle
in mechanics'®* with potential applications in remote sensing™.
Moreover, two or more frozen evanescent phonon modes can lead
to constructive or destructive interference of the displacement field
in the middle of the beam, depending on the length of the beam.
This behaviour is similar to Fabry-Pérot resonances in a cavity at
finite frequencies, but the frozen modes or waves we consider here
are purely static. As a result of these interferences, the effective
spring constant of a metamaterial beam can oscillate with respect
to the beam length'?, whereas ordinarily, the spring constant scales
inversely withbeam length. This ordinary behaviour is only recovered

a (k) = Co + Cok? + - b | 0 -@1e= Co+ v -
w? w?
@2(=k) = wi(k)
Chirality
—
0 k 0 k
c d
© ©
@.(=k) = w.(k) @.(=k) = w.(k)
/Do ~ k? éw -k
o] k o] k

Fig. 5| Frequency splitting resulting from chirality. a, The squared frequency
dispersion w?(k) of a passive achiral system only contains even-order terms in k.
b, Bands for chiral systems can exhibit odd-order terms in k, but must occur in
pairsaccording to w(k) = Co+ C1k + Czkzi Cak3 +...owing to time-reversal
symmetry. Chirality leads to a weak quadratic frequency splitting|w, - w_| ~ IS
between two chiral bands starting from zero frequency (partc), or stronger linear
splitting| w, - w_| - k between two higher bands (partd).

if beam length exceeds around twice the decay lengths of the frozen
evanescent modes'™.

Mathematically, frozen evanescent modes are special solutions of
differential equations with spatial derivatives up to the second order.
Therefore, they can arise in many different physical systems' %%, An
example quite different from elasticity is electric conduction. In an
electric metawire (Fig. 2h) with nonlocal connections’, the resist-
ance between two points on the wire does not scale proportional to
distance®, but again oscillates like the spring constant of a metamate-
rial beam' discussed earlier. We expect anomalous thermal conduc-
tion to behave analogously in the presence of nonlocality. However,
diffusion-type problems'® are generally not mathematically equivalent
to elasticity'*®.

The concept of frozen evanescent modes is ageneral approach to
understand and determine characteristic lengths in static problems'"”.
Ingeneralized effective-medium descriptions of elasticity, character-
isticlengths have been investigated for many years'*®™"'°, but there was
no systematic approach how to extract them from a known periodic
microstructure. Examples include the push-to-twist coupling in 3D
chiral materials*>""', the stretch-to-bending coupling in 2D chiral
metamaterials"*"* and metamaterials with anomalous stretching
behaviours™*°,

Chirality

As discussed in the introduction (equation (6)), for achiral media, by
spatial symmetry, only even-order terms occur in the dependence on
wavenumber k. In the presence of chirality, even and odd terms can
occur, enhancing the possibilities of designing dispersion relations of
waves in metamaterials. However, in the presence of time-reversal
symmetry and for passive systems, the dispersion relations w(k)
(Fig. 5a) must be symmetric with respect to the wavenumber k (ref. 5).
Therefore, bands containing odd-order terms of kK must occur as
pairs w2(k) = Cox Cik + Czkzi C3k3 +...,withconstantsC, C;...(Fig.5b).
Note that for classical waves, the squared frequency w?plays a similar
role to energy (equation (6)) for quantum systems. Each of the two
bands alone has no inversion symmetry, w,(—k) # w,(+k). How-
ever, the two bands combined satisfy time-reversal symmetry:
(W2(=K), 02(=Kk)) = (@2(+k),  2(+k)). This behaviour holds for the low-
estbands (for example, acoustic phonons) and for higher bands (such
asoptical phonons). The odd-order terms result in frequency splitting
between the two bands |w, (k) — w_(k)| # 0, leading to unique nonlocal
properties that cannot be achieved with the two approaches discussed
thus far'”'%,

Optical activity and acoustical activity. Optical activity results from
the frequency splitting between the two lowest transverse bands in
chiral optical media’. The waves corresponding to these bands are
circularly polarized left-handed and right-handed electromagnetic
waves. Their phase velocities are different owing to the discussed fre-
quency splitting. This difference gives rise to the phenomenon of opti-
calactivity, for which the polarization direction of alinearly polarized
incident transverse electromagnetic wave gradually rotates as it propa-
gates through the chiral material’. The counterpart of optical activity
for acoustic waves (or phonons) in solids is acoustical activity”'°,
where two circularly polarized transverse elastic waves replace the
electromagnetic waves.

Althoughoptical activity and acoustical activity are generally weak
innatural chiral materials, they canbecome very large in metamateri-
als"®"° Suppose we Taylor-expand the two dispersion relations
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according to w2(k) = C,k*+C;k>+ ..., as they start from the zero fre-
quency and cannot be negative. The frequency splitting is at most of
second order, |w, (k) - w_(k)| - k*> (Fig. 5¢). Nevertheless, artificially
designed metamaterials can exhibit orders of magnitude stronger
chiral effects, such as tens of degrees change in the polarization direc-
tion over asingle metamaterial lattice constant'*. Natural chiral crys-
tals and most chiral metamaterials are highly anisotropic and only
support purely circularly polarized eigenmodes along selected high-
symmetric directions. For specially designed metamaterial crystals,
degeneracies can be enforced by design'**'**, and for quasi-crystalline
metamaterial lattices, isotropy is enforced on average'”'. Both
approaches allow obtaining purely circularly polarized eigenmodes
for all wave propagation directions in 3D space.

Both optical activity and acoustical activity have been success-
fully modelled by effective-medium descriptions'>*'®. In optics,
cross-coupling parameters or chiral parameters can beintroduced into
the constitutive matrix that couples (D, B) and (E, H) to model optical
activity'”. For elasticity, one choice is to use awavenumber-dependent
Cauchy elastic tensor'**, again corresponding to spatial dispersion. An
alternative and more suitable approachisto use micropolar continuum
theory™, which assigns additional microrotation degrees of freedom
to each material point in addition to the usual translational degrees
of freedom. In this case, acoustical activity is modelled by similar
cross-coupling terms in the constitutive matrix as in optics. For both
optics and acoustics, the magnitude of the cross-coupling parameters
is bounded by the main-diagonal terms in the constitutive matrix,
resulting from the requirement of positive energy'®. A third choice
is Willis effective-medium theory, in which momentum and stress are
coupled with strain and velocity'” %,

A chiral effect that has no counterpart in optics is the push-to-
twist coupling in chiral elastic solids*’, which stems from the
chirality-induced coupling between a twist mode and a longitudi-
nal mode. The latter is generally absent in electromagnetic materi-
als. Micropolar effective-medium theory can also model this chiral
effect'.

Chirality-induced frequency splitting for higher bands. For higher
bands, the chirality-induced frequency splitting can be more pro-
nounced than for the lowest bands'>. Starting from the expansion
wl(k) = Cy+ Cik+ C,k> + ..., we see thatalinear (rather than quadratic)
frequency splitting according to |w. (k) — w_(k)| - |k| is expected. For
small wavenumbers, one band has a negative group velocity, and the
otherapositive group velocity (Fig. 5d). This offers a route for obtain-
ing negative refraction, as first discussed in optics”°"*2. For mechan-
ics, yet more pronounced effects were suggested based on micropolar
elasticity'”. Here, the higher optical phonon bands split owing to
chirality and hybridize with the acoustic phonons, leading to aroton-
like dispersion relation of the lowest bands'. Corresponding meta-
materials have been designed and studied™*. In this structure, the
nonlocal couplings are directly visible by the rods marked in red in
Fig. 2g. It is presently not clear whether such pronounced effects of
chirality and nonlocality canalso be obtained in optics. In fluids, such
as air or water, only longitudinal acoustic waves are supported, but
no transverse waves. Therefore, not all of the above can simply be
translated. However, effective transverse air sound in metamaterials
canbeachieved by using dipole modes to mimic transverse displace-
ments in solids'”. Furthermore, negative refraction resulting from
the chiral splitting of higher bands can be achieved for airborne
sound™.

Time dependence

Metamaterials generally rely on intentional material inhomogeneity
in space to manipulate waves®*'¥’, Recently, it has been pointed out
that materialinhomogeneity in time can also be harnessed to control
waves"* 1'% Here, material properties can experience step-like changes
in time'*. Interestingly, this approach can also lead to nonlocal
behaviour'*. A simple example is the propagation of an optical pulse
in a homogeneous material with an electric permittivity, &, that
changes to a different value, £(¢) # €, in a very short-time interval,
0 <t<rtandthenchangesbacktog,. Atthe two temporalinterfaces of
t=0and =1, the pulse is partially reflected and partially refracted,
similar to the reflection and refraction of a pulse at a spatial interface
separating two media. This effect has been referred to as time reflection
and time refraction'*. It should be noted that, at a spatial interface, the
frequency is conserved and the wavenumber changes, whereas the
opposite holds true at a temporal interface'*. Interference occurs
between the time-reflected and time-refracted signals at the two tem-
poralinterfaces, leading to a wavenumber dependence of the total
reflection and refraction coefficients. This dispersive response depends
on the duration 7 of the modulation and the modulation shape (dis-
continuous or smeared step)'*2. This behaviour resembles the propaga-
tion of awave through aslab of time-independent material exhibiting
nonlocality™.

The maintechnical challenges for experiments are three aspects,
particularly for optical signals: the abrupt change of material proper-
tiesmust be large; the jump of the material properties should be quick,
atleast comparable withthe period of the waves; the modulation must
be well synchronized throughout the medium. At present, microstrip
lines for radiofrequency waves constitute a suitable platform™*. The
available control frequency has increased from tens of megahertz to
sub-gigahertz by using optically controlled picosecond-switchable
photodiodes'. Acoustic or elastic experiments in the sub-kilohertz
frequency range are also beginning to emerge'**'¥",

Nonlocal metasurfaces
A metasurface canspatially and temporally shape waves thatimpinge
onitfrom air or another medium, which are reflected or transmitted.
The metasurface acts like a generalized phase plate'**™° or a general-
ized diffractive optical element™'. Unlike for the metamaterials dis-
cussed earlier, the units of ametasurface are not necessarily arranged
periodically. Toaccomplish wavefront shaping, the wave must locally
acquire a phase shift between 0 and 21, equivalent to a thickness
between zero and one wavelength. However, as the wavelength is not
a preserved quantity, it may be (much) smaller than the wavelength
inthe outside medium. The community therefore often speaks about
‘sub-wavelength’ thicknesses or ‘flat’ optics™°. This approach has
achieved various interesting functions, including anomalous beam
deflections following ageneralized version of Snell’s law**and focusing.
Metasurfaces are often local in the sense that their unit cells are
designed independently under conditions for which the interaction
with neighbouring unit cellsis negligible, which corresponds toignor-
ing the effects of spatial dispersion. This assumption does not only
decrease the efficiency of local metasurfaces but also limit the possibili-
ties of controlling waves”. For example, to deflect anincident beam by
alarge angle with100% energy efficiency, the local transmission cannot
be100% everywhere along the metasurface™. Energy flow in directions
parallel to the metasurface is inevitable for perfect transmission>*',
which means nonlocality is a must. Interestingly, this restriction can
be relaxed for curved metasurfaces™. In principle, all metasurfaces
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exhibitafinite degree of nonlocality as the scattering of the unit cells
cannot be ideally localized”. By deliberately exploiting and enhancing
nonlocal interactions, metasurfaces allow to perform more complex
functions”, such as taking spatial derivatives of incident images'”.

As nonlocal metasurfaces for optics and acoustics have been
coveredinrecent reviews® ™, we focus onrecent progress here. In the
following, we introduce nonlocal metasurfaces according to two differ-
ent mechanisms, namely, leaky-wave modes and physical couplings.
Leaky-wave modes have mainly been used in optics, whereas physical
couplings have been exploited in acoustics and elasticity.

Leaky-wave modes
Leaky-wave modes are localized in the direction perpendicular to the
metasurface but are extended within the plane of the metasurface',
thereby laterally coupling unit cells of the metasurface (Fig. 6a). We
point to the analogy to zero modes in nonlocal metamaterials dis-
cussed earlier (Fig. 4a). Various approaches to control nonlocality and
leaky-wave modes have been covered in two previous reviews'®'”. More
recently, nonlocal couplings have also been tailored by adjusting the
unit-cell period™ (Fig. 6b) or tuning the height of plasmonic scatters'.
Generally speaking, nonlocal metasurfaces exhibit wavenumber-
dependent transmission, enabling more powerful functions than beam
deflection'. A prominent example is to perform spatial derivatives

of incident images, enabling fast and energy-efficient image (pre-)
processing”, for example, for edge detection. Another example is to
compressthe space betweenlensesin optical systems, leading to more
compact optical devices'®'%*, A recent example is the combination of
spatial differentiation and temporal differentiation'**'*. Here, the non-
local metasurfaceis activated only when signals change substantially
in time, thus achieving event-based processing'®.

The high frequency selectivity of nonlocal metasurfaces' is
another advantage compared with more traditional phase masks. This
means that adesigned function works only at a targeted frequency or
in a narrow frequency range'*® (Fig. 6¢). This frequency selectivity is
attractive for augmented reality'®’, where visible light from the environ-
ment can perfectly pass through a metasurface. By combining the leaky
modes of different nonlocal metasurfaces, multipleimages at selected
colours can be superimposed onto the environment.

Physical coupling

Nonlocalinteractions for acoustic and elastic metasurfaces are more
often achieved by physical connections®, which are quite similar to
what we discussed for nonlocal metamaterials (Fig. 2a-e). This strat-
egy inevitably complicates the structure design to support nonlo-
cal couplings in the plane of the metasurface® (Fig. 6d). Yet, this
has been the main approach to design various nonlocal acoustic and

d Unit cell
Nonlocal

Local

Fig. 6 | Nonlocal metasurfaces. a, Nonlocality for optical metasurfaces mainly
results from leaky-wave modes (red) propagating within the metasurface plane.
Incident and reflected light is shown in black. b, A simple method of tuning
nonlocal coupling is to vary the unit cell size. White scale bars, 500 nm. Partb
adapted with permission from ref. 159, AAAS. ¢, Alocal metasurface (left panel)
focuses waves with low frequency selectivity. A nonlocal optical metasurface
(right panel) can focus light selectively only for a targeted narrow frequency
range. The conversion efficiency can be enhanced by Huygens’ nonlocality.
Part c adapted fromref. 168, Springer Nature Limited. d, A nonlocal mechanical

B

(% 1

—_—
Radiative B
coupling

metasurface based on beyond-nearest-neighbour couplings. The left top panel

is aschematic of the metasurface unit cell (left bottom panel). Right panelis a
metasurface composed of multiple unit cells. Bottom left panel and right panel
of part d adapted with permission from ref.170, PNAS. e, Nonlocal couplings
inacoustics can be directly realized via radiative coupling between acoustic
waves transmitted through different holesin a screen. The right panel shows an
ultra-thin nonlocal acoustic metasurface based on a perforated plate. Right panel
of parteisadapted fromref. 176, CCBY 4.0.
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Glossary

Characteristic length scales
For sample sizes much larger than
the characteristic length, size effects
become negligible.

Chiral metamaterials

A metamaterial lacking inversion
symmetry, mirror planes and
rotation-reflection symmetries.

Saint-Venant's principle

The linear elastic response of a material
in the far field becomes insensitive to
the precise location and distribution of
the loading.

Size effects
We refer to size effects as the
dependence of material properties, for

example, the Young's modulus, on the
size of the sample.

Interlaced wire media

An electromagnetic structure
composed of interconnected metal
wire meshes.

Non-Bloch solutions

Non-Bloch solutions do not obey
Bloch's theorem but are still solutions of
the periodic problem.

elastic metasurfaces”" 7. For underwater metasurfaces, nonlocality
is ofteninevitable owing to strong coupling between the water-borne
sound and the components of the metasurface, even without physical
channels to couple different unit cells">"°.

Generally, itis fair to say that the development of nonlocal meta-
surfaces foracoustics and elasticity lags behind their optical counter-
part. Typical functions such as anomalousreflection, beam splitting or
focusing have been demonstrated”’. Amore recent applicationis anon-
localacoustic hologram'>'¢, which can potentially be used for particle
or cellmanipulationand trapping. Here, the wave transmitted through
ametasurface forms adesired field pattern at animage plane. Instead
ofusing channelsto couple the metasurface unit cells, nonlocality can
solely arise from radiative coupling between transmitted waves at dif-
ferentlocations' (Fig. 6e). This type of coupling has been exploited to
design ultra-thin nonlocal metasurfaces based on perforated plates'”®.
Nonlocalinteractions can be further enhanced by using the vibration
of the thin perforated plate itself, particularly for underwater sound'”>.
Further examples of nonlocal metasurfaces for acoustics and elasticity
areemerging, such as performing nonlocality-enabled spatial deriva-
tives with elastic waves' or using nonlocal metasurfaces for hyperbolic
wave propagation'”’.

Outlook

Local metamaterials and metasurfaces*"° have long exploited
frequency-dependent effective responses to control and manipulate
electromagnetic, elastic and acoustic waves. Frequency depend-
ences inherently come with fundamental restrictions owing to the
Kramers-Kronigrelations, arising from causality”®. Nonlocal metama-
terials and metasurfaces additionally exploit wavenumber-dependent
effective responses. Translated from reciprocal space to real space,
this means that one must design, control and enhance the strengths
of nonlocal couplings between the unit cells or building blocks of
metamaterials and metasurfaces. In this Review, we have summarized
different approaches in different classical systems to achieve such
coupling control.

Interestingly, nonlocality also represents a path towards control-
ling strictly static effective behaviours of metamaterials via frozen
evanescent waves with anomalously long spatial decay lengths'. Such
characteristic decay lengths have previously been discussed — for exam-
ple, in the framework of generalized effective-medium elasticities —
but have remained somewhat obscure and without any connec-
tion to the dynamic band structure of the effective medium. Frozen
(orzero-frequency) evanescent Bloch waves arising from pronounced
nonlocality even reach into diffusion problems such as electrical
conductionand Ohm’s law, which are not usually associated with waves.

Combining controlled nonlocality with non-Hermitian systems
or with non-reciprocal systems may enable further unusual or exotic
behaviours such as fundamentally different versions of the skin
effect””. One often wishes to reduce the system thickness to a mini-
mum, for example, for applications in mobile phones, but there is a
limit to how thin functional devices can be. Recently, the concept of
overlapping nonlocality has been identified as the key reason for the
finite minimum thickness of optical systems targeting specific opti-
cal functions™®. Although the connection is not perfectly clear yet,
recent theoretical studies™'*?suggest that nonlocal metamaterials and
metasurfaces may make a distinct contribution to thin and therefore
compact optical systemsin the future, perhaps also including optical

neural networks',

Published online: 16 May 2025
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