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Impedance of Evanescent Modes
for Determining Interface States
in One-Dimensional Chain
Interface states and edge states in periodic structures have been extensively investigated in
the context of topological dynamics over the past decades. In this study, we propose an
impedance method based on surface impedance to analyze interface and edge states in
one-dimensional (1D) periodic chains. The impedances are defined analytically from the
Bloch eigen-modes of the periodic chains. At the interface between two periodic structures,
interface states arise at the frequencies where the impedances of the two structures become
the same. Likewise, edge states occur when the impedance of the structure matches the
boundary impedance. This approach is universal for studying trivial and topological inter-
face and edge states in 1D chain with different types of boundary conditions. We demon-
strate this point with three representative examples: a chain comprising two periodic
lattices, a chain anchored to ground springs at both ends, and a symmetric chain with inter-
facial defects. The analysis of topological interface states offers a vivid physical perspective,
revealing that the topological interface states are either symmetric or antisymmetric modes.
Furthermore, we show that the frequency of the symmetric topological state can be tuned
via a single spring at the interface. This finding can be used to design tunable topological
devices. [DOI: 10.1115/1.4068253]

Keywords: 1D chain, impedance, interface states, boundary conditions, topological,
robustness, tunable

1 Introduction
Interface (edge) waves are modes that are confined to an interface

(edge) and decay exponentially away in the media. The initial
exploration of surface and interface waves dates back to Rayleigh
waves, Love waves, and Stoneley waves in homogeneous media
[1]. In periodic structures, interface waves or edge waves can
emerge via boundary or interface modification, such as replacing
several unit cells or altering the geometry and material parameters
[2–6]. These interface states are sometimes referred to as truncation
resonances [7] or bandgap resonances [8]. Interface states have been
achieved in various physical systems, from photonic crystals (PCs)
[9], optical waveguides [10], and graphene [11], to metamaterials
[12]. Topological interface or edge states in condensed matter
physics [13] have especially garnered significant attention. An
unprecedented characteristic of these states is their topological
robustness, leading to immune to defects, sharp corners, disorder,
and dissipation effects [14]. The associated research has swiftly
expanded into the realm of classical waves [15–18], encompassing

even zero-frequency floppy modes [19,20] and targeted buckling in
lattices that exhibit nontrivial topological polarization [21,22].
In order to understand the physics of interface states in periodic

structures, different approaches have been adopted, such as the
band structure analysis or using effective-medium theory [6,23]
or topological index [24]. The latter one manifests the well-known
“bulk-edge correspondence,” which ensures the existence of inter-
face states between two distinct topological phases. Topological
invariants [14], such as winding number, classify different topolog-
ical phases that are intrinsically linked to the geometrical properties
of bulk band [25]. One often-studied example is the Su–Schrieffer–
Heeger model for polyacetylene, where an interface state arises
when the Zak phase of the occupied band on the one side of the
interface differs from that on the other side [26]. However, the topo-
logical index solely reflects the bulk property of periodic systems
and cannot distinguish the impact of boundary conditions. Tech-
niques involving the addition of an anomalous “cap layer” (a homo-
geneous layer) [27] or “tuning layer” (unit cells) [28] at the edges of
periodic structures have been proposed to control edge states. In
fact, even for robust topological interface states, the frequencies
are influenced by dislocation [29], defects, and truncations [30] of
the unit cell at boundaries.
Multiple studies have delved into the investigation of edge states

in 1D discrete structures with different boundary conditions. The
existence condition and frequency of the edge state in a 1D diatomic
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mass-and-spring chain under the free boundary [31] are derived
using Rutherford continuants [32] and are generalized to the case
with a boundary spring [33]. For the case of alternative spring con-
stants [34], the existence condition for edge states is derived from a
characteristic equation by Da-Fonseca [35]. A closed existence con-
dition has been given for a finite 1D chain under general boundary
conditions [36]. Recently, the topological index has been adopted to
analyze the edge state of a continuum beam with clamped ends [37].
Those methods are limited to studying edge states in their specific
structures. A theoretical framework that provides a general under-
standing of interface states and edge states is still missing.
Generally, interface or edge states can be usually treated as the

superposition of propagating Bloch modes and evanescent Bloch
modes. Evanescent Bloch modes are ubiquitous in materials [38]
and are often indispensable in the continuity condition, as evi-
denced by the transmission of elastic waves between laminate and
homogeneous materials [39,40]. The impedance of these modes is
crucial in determining wave reflection and refraction at boundaries
or interfaces. Lawrence et al. [41,42] have defined a surface imped-
ance for two-dimensional (2D) PCs, represented by a small matrix
that stores the necessary information for calculating reflection and
transmission between PCs. They derived the existence conditions
for interface modes at an air–PC interface and a three-layer structure
with two interfaces. Subsequently, Chan and coworkeres [43,44]
established a rigorous relationship between surface impedance
and Zak phases in a 1D dielectric structure, enabling the design
of interface states between two PCs. The impedance method has
emerged as a promising candidate for analyzing interface states in
finite periodic structures with general boundary conditions.
In this study, we consider a finite 1D chain with altered masses,

separating it into periodic part and boundary part. We analytically
derive an impedance for the periodic parts by solving an eigenvalue
problem within a unit cell. By leveraging the impedance matching
conditions between the periodic parts and boundary parts, we
provide analytical solutions for interface states under general
boundary conditions. Our further analysis of different examples
demonstrates the universality of this method in studying edge and

interface states in finite 1D chain. We organize the rest of this
article as follows. Section 2 presents an analytical form of the
impedance for evanescent Bloch modes. We show in Sec. 3 how
to determine edge states in a finite chain from impedance analysis.
Section 4 conducts a comprehensive analysis of topological inter-
face states and the impact of defects. A tunable topological func-
tional device through an interfacial spring is demonstrated in Sec.
5. Section 6 concludes the study.

2 Impedance Method for Interface State
in One-Dimensional Chain
Impedance matching is an important factor in wave-controlling

applications, such as wave mode conversion [45], cloaking [46],
and perfect match layer [47], to name a few. Here, we elucidate
the principle of the impedance method through a 1D finite chain
with an interface at its center. As illustrated in Fig. 1(a), the super-
cell model is composed of two types of lattices with altered masses
AB (m1= 1+ δm, m2= 1− δm, δm= δm1) and CD (δm= δm2) con-
nected at node B (x= 0). All springs are identical with the same
spring constant K= 1. Equivalently, the supercell model can be
visualized as the interface model shown in Fig. 1(a), where AB
and CD lattices extend in the ±x directions but are truncated at
x > 0 and x≤ 0, respectively. The remaining sections of the two lat-
tices are connected at the common node B.
For an infinite periodic lattice with lattice constant a = 1, we

denote the displacement of node α (α= 1, 2) in unit cell j as
ujα (dashed box in Fig. 1(a)). Considering Bloch modes
(ujα = ũ0α exp (i(ωt + jka))) with ω and k being the angular
frequency and the wave number, we obtain the following eigen-
value problem:

(K −Mω2)ũ = 0, K =
2 −1 − exp(−ika)

−1 − exp(ika) 2

[ ]
,

M =
m1 0

0 m2

[ ]
.

(1)

Fig. 1 (a) Supercell model, equivalent interface model, and unit cell model, (b) complex band structures of AB and CD
unit cells, (c) impedance ZB

− and ZD
+ at the interface, and (d ) Eigen-frequencies of the supercell model in Fig. 1 (a).
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where ũ represents the displacement eigenvector. The traditional
band structure is obtained by solving ω for given k. However,
this formula cannot provide information of evanescent Bloch
modes in forbidden bands. To better characterize the interface
effects, we calculated the complex band structure by solving the
wave number k for given ω:

exp(ik±)=
−g∓ sign(ω−ωF3)

�������
g2 − 4

√
2

g= g1g2 + 2, g1

= (m1ω
2 − 2), g2 = (2−m2ω

2), ωF3 =
������������
4/(1−δm2)

√
(2)

where k± represents the wave number of modes that propagate
or amplify in the ±x directions. For frequencies inside the two
forbidden bands: the first forbidden band (FB1= [ωF1, ωF2])
and the second forbidden band (FB2= [ωF3, +∞]) with ωF1,2=������������
2/(1± δm)

√
, the Bloch modes become evanescent modes and the

wave numbers become complex valued. At the central frequency
ωc =

�������������
2/(1− δm2)

√
in FB1, the decay coefficient of the evanescent

modes (c=Abs[Im(k±)]) reaches its maximum:

cmax =Abs Im ln 1+
1
m1

−
1
m2

− 2

�������
−δm2

m2
1m

2
2

√( ){ }[ ]
(3)

We proceed to define the impedance of the modes by adopting
the concept of deformation impedance from vibration systems Zα
=Fα/uα, where Fα denotes the input excitation load acting on
node α and uα is the output displacement [48]. Along this line,
the impedance of the lattice at node α is defined as follows:

Z±
α =

f̃ αβ
ũα

= 1 +
1

(1 + eik∓ )

[ ]sign(α−β)
(4)

where f̃ αβ = ũα − ũβ is the force in spring indexed αβ for the Bloch
modes and Zα

± represents the impedances at node α for eigen-mode
that decay away from the interface in ±x directions with k∓. Due to
the parity of node mass in a unit cell, the values of Zα

± at node α for
δm equal to Zβ

∓ at node β for −δm. By substituting Eq. (2) into Eq.
(4), Zα

± can be expressed as functions of the angular frequency ω.
The impedance is complex valued within passbands and becomes
real valued within the two forbidden bands.
For an interface state localized at the interface shown by the inter-

face model in Fig. 1(a), the displacement field and the force must be
continuous across the interface. In order to obtain nontrivial solu-
tions, these two conditions together imply the impedance match
condition on the interface. Notice that, the evanescent Bloch
modes on each side of the interface must decay away from the inter-
face in opposite directions. We then obtain the condition for inter-
face states, i.e., Z−

B = Z+
D , with the following form:

(1 + eik
+
)

g1

∣∣∣∣
δm=δm1

=
(1 + eik

−
)

g1

∣∣∣∣
δm=δm2

(5)

By substituting Eq. (2) into Eq. (5), we obtain three general solu-
tions in forbidden bands:

ωI1 = Γ +
1
p

��
23

√
Ξ

3Δ
−

Δ
3

��
23

√
[ ]

ωI2,3 = Γ +
1
p

1 ∓ i
��
3

√( )
Ξ

3
��
43

√
Δ

−
1 ± i

��
3

√( )
Δ

6
��
23

√
[ ] (6)

with

c12 = (1 − δm1)(1 + δm1),

d12 = (1 − δm2)(1 + δm2),

p = c12 + d12,

q = c12d12,

Γ =
4p
3q

,

Ξ = −16p2 + 12q( p + 3),

Λ = 144( − δm6
1δm

2
2 + δm4

1δm
4
2 − δm2

1δm
6
2) + . . .

16(δm6
1 + 12δm4

1δm
2
2 + 12δm2

1δm
4
2 + δm6

2) + . . .

48(δm4
1 − 10δm2

1δm
2
2 + δm4

2) + 48(δm2
1 + δm2

2) + 16,

Δ =

������������������
Λ +

�����������
Λ2 + 4Ξ3

√
3

√
where ωI1 in FB1 and ωI2 in FB2 represent interface states that arise
for small mass connection, i.e., smaller masses are located on the
interface (δm1 > 0, δm2 < 0), while ωI2 in FB1 corresponds to inter-
face state for big mass connection (δm1 < 0, δm2 > 0). Notably, no
interface state exists in forbidden bands when δm1 and δm2 have
the same sign.
To illustrate these solutions, we present a numerical example by

setting δm1= 0.4 and δm2=−0.2. The complex band structures for
AB and CD unit cells are shown in Fig. 1(b), and the impedances for
the two lattices are plotted versus angular frequency in Fig. 1(c).
The two impedances ZB

− and ZD
+ match at two frequencies ωI1=

1.473 in FB1 and ωI2= 2.211 in FB2. To verify the correctness
of the impedance method, we show the calculated eigen-frequencies
of the supercell model (Fig. 1(a)) by finite element method (FEM)
in Fig. 1(d ). We use a mode concentration factorΦ to identify local-

ized modes, defined as Φ =
∑2N

i [1 − u2i /max (u2i )]/2N
( )4

, where

ui represents the displacement of the ith node in supercell and N is
the number of unit cells on one side. High Φ values near 1 indicate
localized modes, while small values near 0 suggest nonlocalized
bulk modes. The supercell model has 40 eigen-modes, among
which the two interface states ωI1 and ωI2 precisely match the fre-
quencies obtained by the impedance method (Fig. 1(d )). Unlike
the FEM for solving boundary states, the impedance matching
method in forbidden bands takes great advantage in elucidating
the physical mechanisms of boundary states.

3 Edge State Induced by Boundary Stiffness
in One-Dimensional Chain
When infinite chains are truncated to finite sections, edge states

may exist at boundaries, depending on mass distributions, boundary
conditions, and so on [36]. We utilize the impedance method to
build a general framework to address this problem analytically.
We study a finite periodic chain connected to grounded springs
with stiffness Kb at both ends, as illustrated in Fig. 2(a). We
remark here that Kb= 0 means free boundaries and sufficiently
large Kb approximates clamped boundaries. The impedance of the
periodic chain at the left end and the right end are denoted as ZA

+

and ZB
−, respectively. The impedance for the two grounded

springs is Zb= fb/ub=Kb, where ub is the displacement of the
node and fb is the force in the boundary spring. By applying the
impedance match condition of Zb= ZA

+ and Zb=ZB
−, we derive

the frequencies of the edge states at the left (L) and the right (R)
end in forbidden bands:

ωΨ1,2 =
−sΨ ±

�������������������������
s2Ψ + 8m1m2(1 − Kb)K2

b

√
2m1m2(1 − Kb)

(Ψ = L, R) (7)

with
sL = (2m2 + Kbm1)Kb − 2,

sR = (2m1 + Kbm2)Kb − 2
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There exists left edge state in FB1 (ωL1) for Kb ∈ (1, +∞) and in
FB2 (ωL2) for Kb ∈ (2/(1+ δm), +∞). Right edge states occur in
FB1 (ωR1) and FB2 (ωR2) for Kb ∈ [0, 1) and (2/(1− δm), +∞),
respectively. We present an example of a finite chain (δm= 0.2,
N = 30) to validate the analysis. Impedances at the left end (ZA

+)
and the right end (ZB

−) are plotted in Fig. 2(a). The dashed line
at Kb= 0 intersects with ZB

− at point 1 (ωR1= 1.443) in FB1, indi-
cating an edge state at the right end. This is confirmed by mode 1 in
Fig. 2(b). When Kb= 3, three surface states emerge at points 2–4
(ωL1= 1.484, ωL2= 2.063, and ωR2= 2.307), among which mode
2–3 are edge states at the left end, while mode 4 corresponds to
the right end. When the chain is clamped (Kb→∞), the impedance
matches at the right end in FB1, similar to mode 5 (Kb= 10, ωL1=
1.576), where the displacement of the node connected to the bound-
ary spring is suppressed.

4 Topological Interface State and Defects
in One-Dimensional Symmetric Chain
Recently, Zhang et al. reported a class of “strain topological

metamaterials,” capable of achieving winding numbers of 0 and
1. Those topological properties are apparent only in higher-order
(“strain”) coordinates but hidden in the standard coordinates [49].
By employing the impedance method, we can analyze topological
interface states without relying on winding numbers and the
“strain” coordinates. This approach is also suitable for analyz-
ing the robustness of the topological states and the impacts of
defects.
We first analyze the topological interface state in a defect-

free model in Fig. 3(a), which is equivalent to the interface model
in Fig. 1(a), under the assumption δm2=−δm1= δm. Topological
interface states arise due to different topological numbers of the
left and the right parts [50,51]. Three general solutions of Eq. (7)
are the angular frequencies of the topological interface states, i.e.,

ωI1 =
�������������
2/(1 − δm2)

√
in FB1 and ωI2 =������������������������������

(3 +
����������
1 + 8δm2

√
)/(1 − δm2)

√
in FB2 for δm< 0 (meaning

two small masses at the interface), and ωI3 =������������������������������
(3 −

����������
1 + 8δm2

√
)/(1 − δm2)

√
in FB1 for δm > 0 (meaning two

big masses at the interface). Additionally, two degenerated edge
states ωE4=ωI1 exist at free ends. As illustrated in Fig. 3(c), the

frequencies obtained from the impedance method (black marker)
agree well with the supercell result (color coded by Φ).
The impedance method is also capable of studying the impact of

defects on the topological states. We consider a defects model
as shown in (Fig. 3(a)), where the defects are two masses with
md1= (1+ δm)ξ/η and md2= (1+ δm)ξη. The impedance analysis
is schematically shown in Fig. 3(b). Due to the symmetry, the
impedance on the left side (ZB

−) of the interface layer equals to
that on the right (ZB

+) and are both denoted as ZI. Thus, the
dynamic equation for the interface layer can be written as follows:

(H − ZII)u = 0, H = 1 − md1ω2 −1
−1 1 − md2ω2

[ ]
(8)

The two solutions for ZI are as follows:

ZI1,2 = Eig(H), ZI1 < ZI2 (9)

where ZI1 and ZI2 are the boundary impedance for the anti-phase
and in-phase mode (u), respectively.
By applying the impedance match condition: ZI1= ZB

+, ZI2=
ZB

+, we get the solutions of symmetric and antisymmetric edge
states at the interface. Here, we focus on states within FB1 and
select states 1 (δm=−0.4, ωI1= 1.543) and 2 (δm= 0.4, ωI2=
1.332) as benchmarks to analyze the impact of defects
(Fig. 3(d )). As η increases (with ξ= 1), which implies an enlarge-
ment of the mass discrepancy on the interface, the topological
bands persist for both small and large mass connections, while
they are shifted downward and upward, respectively. Notably, as
ξ increases (with η= 1), which signifies an increase in the overall
interfacial mass, a new interface state arises for small mass connec-
tion, while a decrease of ξ is required for large mass connection.
Conversely, the states might be eliminated when alter ξ in the oppo-
site directions. Impedances on the interface (ZB

+, ZI) are depicted in
Fig. 3(e). The intersection points 5 (η= 8, ωI5= 1.206) and 8 (η= 3,
ωI8= 1.543) are from ZI2 and ZI1 for small and large mass connec-
tions, respectively, and they converge to states 1 and 2 when (η, ξ)=
(1, 1). Interestingly, due to the frequency of state 8 (ωI8), which is
occasionally similar to that of state 4 (ωE4), the supercell exhibits
three modes at ω= 1.543, among which are two degeneracy
mixed modes localized at both interface and edges, as shown by
mode 8 in Fig. 3( f ) and a pure edge state on free ends, similar to
mode 1 in Fig. 2(b). The antisymmetric (ωI6= 1.228, ωI9= 1.432)
and symmetric states (ωI7= 1.312, ωI10= 1.741) are generated by
the change of overall mass on the interface. Notice that, all interface

Fig. 2 (a) Supercell: AB lattice (m=−0.2) with 30 unit cells connected to two grounded
springs. The impedances of node A (ZA

+) and B (ZB
−) at two ends and the decay coefficient

c. (b) Edge states 1–5.
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states are eliminated when ξ < 0.5 and ξ> 1.5 for small and large
mass connection cases, respectively. Our analysis on the defect
model indicates the topological protection property in certain
aspects that the interface state always exists for asymmetric
defects within a large parameter range. However, topological inter-
face states are indeed greatly influenced by defects on the interface
and even eliminated in some cases.

5 Tuning Topological Interface State Through
Interfacial Parameter
Topological insulators constitute a distinct class of advanced

waveguides that exhibit exceptionally robust transmission proper-
ties, making them suitable for applications in photonic logic [52],
advanced vibration isolation [53], energy trapping, or harvesting

devices [54]. The development of smart and intelligent metamater-
ials that possess tunable and active wave dynamics is of consider-
able interest [55–57]. Recently, a tunable topological functional
device has been reported to modulate the topological phase
through tuning embedded magnetic springs within the metamaterial
[51]. The aforementioned analysis has demonstrated that, in addi-
tion to the bulk properties, interface properties can also be used to
control the topological states. This will largely reduce the number
of required actuating elements.
Here, we consider a topological system with a magnetically

tunable spring (as depicted in Fig. 3 of Ref. [51]) at the interface,
as illustrated in Fig. 4. Due to the mirror symmetry of the system,
the interface spring undergoes either rigid translation (antisymmet-
ric) or telescopic (symmetric) deformation. Therefore, the imped-
ance of the spring is ZI= 0 or 2KI, respectively. With the

Fig. 3 (a) Supercell of no defects and defects model. (b) Schematic of the impedance method for defects model. (c)
Topological bands by impedance method and finite element method. (d) The influence of defect parameters η (left)
and ξ (right) on interface states for δm=−0.4 (green markers with points 1, 5, 6, 7) and δm=0.4 (maroon markers
with points 2, 8, 9, 10). (e) The influence of defect parameters on boundary impedances. Left: Impedance ZI with param-
eters (η, ξ)= (1, 1) (black, dash-dotted line), (8, 1) (magenta, dotted line), and (1, 4) (blue, dotted line) and Impedance ZB

+

for δm=−0.4 (green solid line). Right: Impedance ZI with parameters (η, ξ)= (1, 1) (black, dash-dotted line), (3, 1)
(magenta, dotted line), (1, 0.1) (blue, dotted line) and impedance ZB

+ for δm=0.4 (maroon solid line). ( f ) Eigen states
correspond to 1, 2, 5–10 in (b), (c), (d ), and (e).
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impedance matching condition, we obtain an antisymmetry inter-
face state at ωI1 for ZB

+= 0 and a symmetric interface state at ωI2

for ZB
+= 2KI. The angular frequency ωI1= 1.543 of the antisym-

metric mode is independent of the interface spring stiffness, as
the spring undergoes rigid translation. The frequency of the sym-
metric mode can be tuned over a large range by varying the stiffness
KI, as shown in Fig. 4. When KI ∈ (0.49, 0.72), the symmetric inter-
face state disappears in the passband region. The localization degree
of the symmetric state in FB1, determined by the decay coefficient
c, decreases with the increase of KI. In FB2, the decay coefficient
increases significantly and the interface states can be highly
localized.

6 Conclusion
In this article, we proposed an impedance method for studying

interface states and edge states in finite one-dimensional diatomic
mass-and-spring chains. The key idea is to consider the impedance
of finite periodic lattice and the impedance of boundary or interface
parts separately. Interface and edge states are derived by consider-
ing the impedance matching of different parts. This method is appli-
cable to typical boundary conditions, e.g., boundary spring,
attached mass, and interface layer. Three situations are theoretically
analyzed and numerically validated, including the interface states
between two finite periodic lattices, the edge states at two ends of
periodic lattices under different boundary conditions, and the topo-
logical interface states between two distinct topological phases. In
particular, it is shown that the symmetric topological interface
states can be tuned over a wide frequency range by varying the stiff-
ness of a single interfacial spring, enabling design tunable topolog-
ical devices. The impedance method provides a robust tool to
investigate interface and edge states and can be potentially gener-
ated to higher dimensions.
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