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 A B S T R A C T

Piezoelectric lattices with delicately designed microscopic geometry are powerful building blocks to construct 
integrated sensors and actuators with versatile, yet unconventional, responses absent from bulk materials. 
However, the inverse design of the microscopic geometry to achieve a sought-after electromechanical response 
remains elusive. Here, we suggest an analytical approach, called piezoelectric gauge transformation, to design 
piezoelectric lattice transducers that can deform to an arbitrary desired displacement field when a voltage 
is applied. We first develop continuum piezoelectric gauge transformation and find that the transformed 
piezoelectric material displays piezoelectric polarity and Willis coupling in the sense that the applied electric 
field generates asymmetric stress and body force, and both rigid body rotation and translation induce electric 
charges. To design this polar and Willis-type piezoelectric material, we develop discrete piezoelectric gauge 
transformation and propose feasible lattice design guidelines. Numerical simulations are performed to validate 
the piezoelectric gauge transformation and demonstrate a range of appealing displacement control functions. 
The study presents a complete theoretical framework for the inverse design of lattice transducers to achieve 
arbitrary desired actuated displacement fields, beneficial to the development of soft actuators, robotics, and 
other piezoelectric devices.
. Introduction

Designing piezoelectric materials with desired electromechanical 
esponses is a key issue of fundamental importance for the application 
f piezoelectric devices ranging from, traditionally, sonar systems [1,2], 
ressure and force sensors [3,4], ultrasonic actuators [5,6], energy 
arvesters [7,8], medical imaging [9,10], clock generators [11,12], 
nd scanning probe microscopes [13,14], to, currently, soft electron-
cs [15,16], soft robotics [17,18], sustainable technologies [19,20], and 
recise as well as personalized medical devices [21–24]. Often, elec-
romechanical properties and responses of piezoelectric materials are 
etermined by their crystallographic structures and compositions [25]. 
ifferent techniques (e.g. doping) have been suggested to change crys-
allographic structures to control properties of piezoelectric materials. 
owever, limitations still exist, e.g. coupled mechanical flexibility and 
ensitivity and a narrow range of piezoelectric anisotropy [26,27]. Re-
ent breakthroughs in additive manufacturing allow the construction of 
hree-dimensional, and multi-material, piezoelectric lattices composed 
f a set of small piezoelectric beams on the microscopic scale [28–30]. 
he geometric degrees of freedom on the fabricable microscopic scale 
nlarge the design space of piezoelectric properties and responses in 
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a way similar to that of mechanical metamaterials [31–33]. Some 
nonstandard electromechanical properties and responses absent in bulk 
materials (e.g. designed anisotropy and directional response) have been 
demonstrated in piezoelectric lattices [34–36]. However, the inverse 
design of piezoelectric lattices to achieve desired electromechanical 
responses remains elusive. On one hand, the solution of the inverse 
problem is not guaranteed to be unique or stable. On the other hand, 
the inverse design of piezoelectric lattices involves complex interaction 
between elasticity and electricity.

Here, we suggest a simple analytical approach to design piezoelec-
tric lattice transducers that can deform to a desired displacement field 
under a given electric voltage (see Fig.  1a). The analytical approach 
is formulated by extending transformation elasticity to transformation 
piezoelectricity. Transformation elasticity, widely known for the de-
sign of elastic cloaks, builds the equivalency between the change in 
curvilinear coordinates and the change in material parameters [37–39]. 
Since its discovery, transformation elasticity has been an efficient tool 
for calculating material parameters to control the wave trajectories 
described by the change in coordinates. Unlike transformation optics 
and acoustics, the form of the transformed constitutive relations in 
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Fig. 1. Schematic representation of continuum piezoelectric gauge transformation for the inverse design of piezoelectric materials. (a) The goal of the inverse design is to calculate 
piezoelectric material parameters to achieve the desired displacement field with the application of an electric field. (b) During the inverse design, we first assume a piezoelectric 
material in the virtual space and calculate the displacement field with the application of an electric field. Based on the desired displacement field, we find the corresponding 
displacement and electric potential gauges. The required piezoelectric material parameters are solved by implementing continuum piezoelectric gauge transformation. The design 
piezoelectric material will display the desired displacement field automatically.
elasticity depends on the displacement gauge implemented during the 
transformation. For example, using the Milton–Brian–Willis gauge, the 
transformed constitutive relations display Willis coupling, where the 
stress is symmetric, but couples with velocity [37,38,40]. On the other 
hand, for the Brun–Guenneau–Movchan gauge, Willis coupling disap-
pears, but the stress becomes asymmetric, and the elasticity tensor lacks 
minor symmetry [41–47]. It is worth mentioning that although the 
two gauges are common for cloaking and wave control purposes, the 
displacement gauge is not limited to the two, which, actually, can be 
arbitrary and manipulated intentionally. In particular, imposing the dis-
placement gauge as a design variable, while keeping the coordinates the 
same during transformation, allows the control of displacement fields 
in solid materials at will [38,48]. This specific version of transformation 
elasticity is called gauge transformation. Remarkably, the materials 
for displacement control with a general displacement gauge display 
Willis coupling and polar properties at the same time. To design this 
polar Willis material, a discrete version of the gauge transformation has 
been suggested, where the transformation is operated among discrete 
lattices, rather than the continuum medium considered in conven-
tional transformation methods [39,48,49]. However, what nonstandard 
piezoelectric properties arise when employing gauge transformation in 
piezoelectricity and how to implement discrete transformation to de-
sign piezoelectric lattice transducers to achieve a desired displacement 
field under a given electric voltage are still unknown.

In this study, we first operate the gauge transformation, by consider-
ing both the displacement gauge and the electric potential gauge, over 
a continuum piezoelectric material to calculate the electromechanical 
properties of the transformed piezoelectric solid for achieving a desired 
displacement field when the transformed piezoelectric solid is excited 
with the given electric voltage. We critically analyze the origin and 
consequences of polarity and Willis coupling in piezoelectricity as a 
result of the transformation. To design the polar and Willis-type piezo-
electric materials, we perform the discrete gauge transformation over 
piezoelectric lattices. On the basis of the discrete piezoelectric gauge 
transformation, a lattice design guideline is suggested to construct the 
geometry of desired polar Willis piezoelectric lattices. Numerical simu-
lations are performed to validate both the continuum and the discrete 
piezoelectric gauge transformations. Finally, we show procedures and 
examples of inverse design of lattice transducers to achieve the desired 
shape changes and strain fields under a given electric voltage. The study 
presents an analytical approach to guide the inverse design of lattice 
2 
transducers, beneficial to the design of soft actuators, robotics, and 
other piezoelectric devices.

2. Piezoelectric gauge transformation

In this section, we formulate the continuum piezoelectric gauge 
transformation to calculate the electromechanical properties of the 
transformed piezoelectric materials. In the transformation, both the dis-
placement and electric potential gauges are implemented. We consider 
a virtual piezoelectric solid occupied in 𝐱 (see the left panel in Fig.  1b). 
The piezoelectric solid has the stiffness tensor 𝐂, dielectric tensor 𝐏 and 
piezoelectric tensor 𝐄, which are defined as 

𝑇𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙
𝜕𝑈𝑙
𝜕𝑥𝑘

+ 𝐸𝑖𝑗𝑘
𝜕𝜙
𝜕𝑥𝑘

, (1)

𝐷𝑘 = 𝐸𝑖𝑗𝑘
𝜕𝑈𝑗

𝜕𝑥𝑖
− 𝑃𝑘𝑙

𝜕𝜙
𝜕𝑥𝑙

, (2)

where 𝑇𝑖𝑗 , 𝐷𝑖, 𝑈𝑖, and 𝜙 denote the Cauchy stress tensor, electric 
displacement, displacement, and electric potential of the virtual piezo-
electric solid, respectively. Note that the virtual piezoelectric solid is 
free-standing and absent from body torque, such that the stress tensor 
is symmetric 𝑇𝑖𝑗 = 𝑇𝑗𝑖, and the stiffness and piezoelectric tensors hold 
minor symmetry, 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑗𝑖𝑙𝑘 and 𝐸𝑖𝑗𝑘 = 𝐸𝑗𝑖𝑘. In general, the 
displacement 𝑈𝑖 can be determined from the equations of motion when 
an electric voltage is applied to the virtual piezoelectric solid together 
with a set of mechanical boundary conditions. To perform the gauge 
transformation, we calculate the potential energy density of the virtual 
piezoelectric solid, which reads as 

𝛯 = 1
2
𝐶𝑖𝑗𝑘𝑙

𝜕𝑈𝑗

𝜕𝑥𝑖

𝜕𝑈𝑙
𝜕𝑥𝑘

− 1
2
𝑃𝑘𝑙

𝜕𝜙
𝜕𝑥𝑘

𝜕𝜙
𝜕𝑥𝑙

+ 𝐸𝑖𝑗𝑘
𝜕𝑈𝑗

𝜕𝑥𝑖
𝜕𝜙
𝜕𝑥𝑘

. (3)

Note that kinetic energy of the piezoelectric material is ignored in the 
derivations for simplicity. Thus, the results presented in the study can 
be a good approximation for quasi-static and low-frequency applica-
tions.

To achieve the desired displacement field 𝐮(𝐱) under an electric 
potential field 𝜑(𝐱) in the physical (or transformed) piezoelectric solid, 
we introduce two gauge fields (see the middle panel in Fig.  1b). One 
is the displacement gauge 𝐀(𝐱), where 𝐮 =

(

𝐀𝑇 )−1𝐔. The other is the 
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electric potential gauge 𝐵(𝐱), where 𝜑 = 𝐵−1𝜙. As a result, the spatial 
gradients of the displacement and the electric potential read 
𝜕𝑈𝑗

𝜕𝑥𝑖
= 𝐴𝑞𝑗

𝜕𝑢𝑞
𝜕𝑥𝑖

+
𝜕𝐴𝑞𝑗

𝜕𝑥𝑖
𝑢𝑞 , (4)

𝜕𝜙
𝜕𝑥𝑘

= 𝐵
𝜕𝜑
𝜕𝑥𝑘

+ 𝜕𝐵
𝜕𝑥𝑘

𝜑. (5)

Next, we let the potential energy density conserve before and after 
the transformation by substituting Eqs. (4) and (5) into Eq. (3), which 
leads to 

𝜉 = 𝛯 = 1
2

[

𝐶𝑖𝑗𝑘𝑙

(

𝐴𝑞𝑙
𝜕𝑢𝑞
𝜕𝑥𝑘

+
𝜕𝐴𝑞𝑙

𝜕𝑥𝑘
𝑢𝑞

)

+ 𝐸𝑖𝑗𝑘

(

𝐵
𝜕𝜑
𝜕𝑥𝑘

+ 𝜕𝐵
𝜕𝑥𝑘

𝜑
)]

×
(

𝐴𝑞𝑗
𝜕𝑢𝑞
𝜕𝑥𝑖

+
𝜕𝐴𝑞𝑗

𝜕𝑥𝑖
𝑢𝑞

)

+ 1
2

[

𝐸𝑖𝑗𝑘

(

𝐴𝑞𝑗
𝜕𝑢𝑞
𝜕𝑥𝑖

+
𝜕𝐴𝑞𝑗

𝜕𝑥𝑖
𝑢𝑞

)

− 𝑃𝑘𝑙

(

𝐵
𝜕𝜑
𝜕𝑥𝑙

+ 𝜕𝐵
𝜕𝑥𝑙

𝜑
)]

×
(

𝐵
𝜕𝜑
𝜕𝑥𝑘

+ 𝜕𝐵
𝜕𝑥𝑘

𝜑
)

.

(6)

Clearly, the transformed potential energy density depends not only on 
the displacement gradient 𝜕𝑢𝑗𝜕𝑥𝑖

 and the electric field 𝜕𝜑𝜕𝑥𝑖 , but also on the 
displacement 𝑢𝑖 and the electric potential 𝜑. By taking derivatives of 
the transformed potential energy density 𝜉 with respect to the gradient 
of displacement 𝜕𝑢𝑗

𝜕𝑥𝑖
, the displacement 𝑢𝑖, the electric field 𝜕𝜑

𝜕𝑥𝑖
, and 

the electric potential 𝜑, we can obtain the formulas of stress, body 
force, electric displacement, and charge density per volume in the 
transformed piezoelectric material, respectively, as 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
𝜕𝑢𝑙
𝜕𝑥𝑘

+ 𝑠𝑖𝑗𝑘𝑢𝑘 + 𝑒𝑖𝑗𝑙
𝜕𝜑
𝜕𝑥𝑙

+ 𝑔𝑖𝑗𝜑, (7)

𝑓𝑘 = 𝑠𝑖𝑗𝑘
𝜕𝑢𝑗
𝜕𝑥𝑖

+ 𝜅𝑘𝑙𝑢𝑙 + 𝑚𝑘𝑙
𝜕𝜑
𝜕𝑥𝑙

+ ℎ𝑘𝜑, (8)

𝑑𝑙 = 𝑒𝑖𝑗𝑙
𝜕𝑢𝑗
𝜕𝑥𝑖

+ 𝑚𝑘𝑙𝑢𝑘 − 𝜂𝑘𝑙
𝜕𝜑
𝜕𝑥𝑘

− 𝑎𝑙𝜑, (9)

𝛾 = 𝑔𝑖𝑗
𝜕𝑢𝑗
𝜕𝑥𝑖

+ ℎ𝑘𝑢𝑘 − 𝑎𝑙
𝜕𝜑
𝜕𝑥𝑙

− 𝛽𝜑, (10)

with 𝑐𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑡𝑖𝑞𝐴𝑙𝑡𝐴𝑗𝑞 , 𝑠𝑖𝑗𝑘 = 𝐶𝑡𝑞𝑖𝑟𝐴𝑗𝑟
𝜕𝐴𝑘𝑞
𝜕𝑥𝑡

, 𝜅𝑘𝑙 = 𝐶𝑡𝑞𝑟𝑠
𝜕𝐴𝑙𝑞
𝜕𝑥𝑡

𝜕𝐴𝑘𝑠
𝜕𝑥𝑟

, 𝑒𝑖𝑗𝑙 =

𝐸𝑖𝑡𝑙𝐴𝑗𝑡𝐵, 𝑚𝑘𝑙 = 𝐸𝑡𝑞𝑙𝐵
𝜕𝐴𝑘𝑞
𝜕𝑥𝑡

, 𝑔𝑖𝑗 = 𝐸𝑖𝑡𝑞𝐴𝑗𝑡
𝜕𝐵
𝜕𝑥𝑞

, ℎ𝑘 = 𝐸𝑡𝑞𝑟
𝜕𝐴𝑘𝑞
𝜕𝑥𝑡

𝜕𝐵
𝜕𝑥𝑟

, 𝜂𝑘𝑙 =

𝑃𝑘𝑙𝐵𝐵, 𝑎𝑙 = 𝑃𝑙𝑗𝐵
𝜕𝐵
𝜕𝑥𝑗
, and 𝛽 = 𝑃𝑡𝑞

𝜕𝐵
𝜕𝑥𝑡

𝜕𝐵
𝜕𝑥𝑞
. It can be seen from 

Eqs. (7)–(10) that the transformed piezoelectric materials behave re-
markably different compared with conventional piezoelectric materials. 
Firstly, the body force 𝑓𝑘 and the charge density per volume 𝛾 arise in 
the transformed constitutive relations. Further, in addition to the con-
ventional piezoelectric coupling term 𝑒𝑖𝑗𝑙, the transformed constitutive 
relations contain both mechanical and electrical Willis coupling caused 
by the spatial variation of the displacement and electric potential 
gauges. Specifically, mechanical Willis coupling described by 𝑠𝑖𝑗𝑘 in the 
study refers to the cross-coupling between stress and displacement, as 
well as between body force and displacement gradient, and electrical 
Willis coupling described by 𝑎𝑙 refers to the cross-coupling between 
electric displacement and electric potential, as well as between charge 
density per volume and electric field. Note that, in a moving frame, the 
displacement should be measured with respect to the moving frame, 
as the grounded springs 𝜅𝑘𝑙 of transformed piezoelectric material are 
mounted to this moving frame. The mutual coupling also appears in 
electromechanical coupling terms, where the electric field generates 
the body force through 𝑚𝑘𝑙 and the electric potential generates the 
stress through 𝑔𝑖𝑗 for actuation, and, meanwhile, the displacement 
produces the electric displacement through 𝑚𝑘𝑙 and the displacement 
gradient produces the volume charge through 𝑔𝑖𝑗 for sensing. Together, 
Eqs. (7)–(10) can be regarded as a general constitutive relation of piezo-
electricity. Secondly, the transformed piezoelectric materials display 
polarity. On the one hand, the rigid-body rotation and translation give 
3 
rise to asymmetric stress, as 𝑐𝑖𝑗𝑘𝑙 ≠ 𝑐𝑖𝑗𝑙𝑘 ≠ 𝑐𝑗𝑖𝑙𝑘 and 𝑠𝑖𝑗𝑘 ≠ 𝑠𝑗𝑖𝑘. This 
requires a body torque for equilibrium. The polar direction in the study 
is defined as the direction of the body torque arising in the transformed 
piezoelectric material, which is along (𝜎𝑗𝑖−𝜎𝑖𝑗 )∕|𝜎𝑗𝑖 − 𝜎𝑖𝑗 |𝜖𝑖𝑗𝑘𝐞𝑘. Further, 
since 𝑒𝑖𝑗𝑘 ≠ 𝑒𝑗𝑖𝑘 and 𝑔𝑖𝑗 ≠ 𝑔𝑗𝑖, the electric field and electric potential 
also generate asymmetric stress and body torque in stark contrast to 
conventional piezoelectric materials where only symmetric stress is 
generated. On the other hand, due to the combination of polarity and 
Willis coupling, rigid-body rotation induces not only body force, but 
electric field, and electric potential (see the first terms in Eqs. (8)–(10)), 
whereas the piezoelectric materials found so far are free from rigid-
body rotation. The combined effects of Willis coupling and polarity 
have been shown in elasticity [48], but have never been reported in 
piezoelectricity.

For the purpose of actuation, it is convenient to select a con-
stant electric potential gauge 𝐵 such that the piezoelectric constitutive 
relations in Eqs. (7)–(10) can be simplified as 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
𝜕𝑢𝑙
𝜕𝑥𝑘

+ 𝑠𝑖𝑗𝑘𝑢𝑘 + 𝑒𝑖𝑗𝑙
𝜕𝜑
𝜕𝑥𝑙

, (11)

𝑓𝑘 = 𝑠𝑖𝑗𝑘
𝜕𝑢𝑗
𝜕𝑥𝑖

+ 𝜅𝑘𝑙𝑢𝑙 + 𝑚𝑘𝑙
𝜕𝜑
𝜕𝑥𝑙

, (12)

𝑑𝑙 = 𝑒𝑖𝑗𝑙
𝜕𝑢𝑗
𝜕𝑥𝑖

+ 𝑚𝑘𝑙𝑢𝑘 − 𝜂𝑘𝑙
𝜕𝜑
𝜕𝑥𝑘

. (13)

Clearly, the charge density per volume and the electric potential dis-
appear in Eqs. (11)–(13), and the mechanical behavior can be con-
trolled by the electric field alone. Note also that, in the equations, 
the piezoelectric cross-coupling between displacement and electric dis-
placement as well as between electric field and body force sustains. This 
piezoelectric Willis constitutive relations coincide with the constitutive 
relations attained from elastodynamic homogenization of piezoelectric 
composites with asymmetric periodic cells [50–53].

3. Discretization

The continuum piezoelectric gauge transformation offers a clear 
view of the underlying macroscopic piezoelectric properties needed 
for the desired actuation, but provides no clues on how to design a 
lattice displaying the required piezoelectric Willis coupling as well as 
the polar properties. Instead of applying numerical methods, e.g. topol-
ogy optimization or data-driven approaches, we consider a simple 
piezoelectric lattice (e.g. a triangular lattice) in the virtual space and 
perform piezoelectric gauge transformation over the discrete lattice. 
Our key hypothesis is that the simple piezoelectric lattice can be 
equivalent to a continuum material by homogenization. By performing 
the same piezoelectric gauge transformation over the simple lattice 
and its equivalent continuum material, the transformed lattice should 
satisfy the desired piezoelectric properties transformed from the ho-
mogenized properties of the continuum material automatically. Thus, 
we next discretize the continuum piezoelectric gauge transformation 
by operating the transformation over discrete lattices. To perform this 
procedure, we consider a virtual discrete lattice composed of an array 
of linear piezoelectric springs, which can be realized using piezoelectric 
bars with electrodes mounted on the top and bottom surfaces (see 
Fig.  2a). The piezoelectric spring is placed between two nodes at 𝐱(𝑖)
and 𝐱(𝑗), and the elastic constant, piezoelectric constant, dielectric 
constant and direction of the piezoelectric spring are denoted as 𝐾𝑗,𝑖, 
𝐸𝑗,𝑖, 𝑃𝑗,𝑖 and 𝐍𝑗,𝑖 =

(

𝐱(𝑗) − 𝐱(𝑖)
)

∕ ‖‖
‖

𝐱(𝑗) − 𝐱(𝑖)‖‖
‖

, respectively. Let 𝐔(𝑖) be 
the displacement at the node 𝑖 and 𝜙(𝑖) the electric potential on the 
electrode connected to the node 𝑖. The constitutive relations of the 
virtual piezoelectric spring can be written as 
𝐅𝑗,𝑖 = 𝐾𝑗,𝑖𝐍𝑗,𝑖 ⊗ 𝐍𝑗,𝑖

(

𝐔(𝑗) − 𝐔(𝑖)) + 𝐸𝑗,𝑖𝐍𝑗,𝑖
(

𝜙(𝑗) − 𝜙(𝑖)) , (14)

⟨( (𝑗) (𝑖)) ⟩ ( (𝑗) (𝑖)) (15)
𝑄𝑗,𝑖 = 𝐸𝑗,𝑖 𝐔 − 𝐔 ,𝐍𝑗,𝑖 + 𝑃𝑗,𝑖 𝜙 − 𝜙 ,
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Fig. 2. Schematic representation of discrete piezoelectric gauge transformation for the inverse design of piezoelectric lattices. (a) A virtual lattice consists of an array of piezoelectric 
springs. The piezoelectric spring can be realized using a piezoelectric bar with electrodes mounted on the top and bottom surfaces. (b) Transformed piezoelectric springs become 
Willis-type piezoelectric springs with both internal and ground springs and are located in different directions in the physical space. Clearly, they cannot form a well-connected 
lattice without adjustment. For the Willis-type piezoelectric spring, the voltage applied to the internal spring produces a force on the grounded spring, and the change in length 
of the grounded spring induces a charge on the internal spring. (c) Transformed piezoelectric lattice after proper geometric adjustment using rigid masses of different shapes. The 
rotational degrees of freedom of the rigid masses are suppressed, leading to the required polarity.
̃

̂

where 𝐅𝑗,𝑖 denotes the spring force applied to the node 𝐱(𝑖) and 𝑄𝑗,𝑖 rep-
resents the accumulated charge on the electrode connected to the node 
𝐱(𝑖). Note that the subscript ‘‘𝑗, 𝑖’’ does not denote spatial differentiation.

The potential energy of the virtual piezoelectric spring then reads

𝑗,𝑖 =
1
2
𝐾𝑗,𝑖

⟨(

𝐔(𝑗) − 𝐔(𝑖)) ,𝐍𝑗,𝑖
⟩2 + 𝐸𝑗,𝑖

⟨(

𝐔(𝑗) − 𝐔(𝑖)) ,𝐍𝑗,𝑖
⟩ (

𝜙(𝑗) − 𝜙(𝑖))

+ 1
2
𝑃𝑗,𝑖

(

𝜙(𝑗) − 𝜙(𝑖))2, (16)

where ⟨, ⟩ represents the dot product.
Similar to the continuum piezoelectric gauge transformation, we 

introduce the displacement and electric potential gauges for each of 
the discrete nodes in the lattice, which are defined as 𝐔(𝑖) = 𝐀𝑖

𝑇 𝐮(𝑖)
and 𝜙(𝑖) = 𝐵𝑖𝜑(𝑖), respectively, to achieve the desired displacement 𝐮(𝑖)
upon the application of the electric potential 𝜑(𝑖). The potential energy 
of each of the piezoelectric springs remains the same before and after 
the transformation. Implementing 𝐮(𝑖) and 𝜑(𝑖) into Eq. (16), we obtain 
the formula of the transformed potential energy as 

𝜀𝑗,𝑖 = 𝑗,𝑖 =
1
2

[

𝑘𝑗,𝑖
⟨

𝐮𝑗,𝑖,𝐧𝑗,𝑖
⟩

+ 𝑘̂𝑗,𝑖
⟨

−𝐮(𝑖), 𝐭𝑗,𝑖
⟩

]

⟨

𝐮𝑗,𝑖,𝐧𝑗,𝑖
⟩

+ 1
2

[

𝑘̂𝑗,𝑖
⟨

𝐮𝑗,𝑖,𝐧𝑗,𝑖
⟩

+ 𝑘̃𝑗,𝑖
⟨

−𝐮(𝑖), 𝐭𝑗,𝑖
⟩

]

⟨

−𝐮(𝑖), 𝐭𝑗,𝑖
⟩

+
[

𝑒𝑗,𝑖
⟨

𝐮𝑗,𝑖,𝐧𝑗,𝑖
⟩

+ 𝑒𝑗,𝑖
⟨

−𝐮(𝑖), 𝐭𝑗,𝑖
⟩]

𝜑𝑗,𝑖

+
[

𝑒𝑗,𝑖
⟨

𝐮𝑗,𝑖,𝐧𝑗,𝑖
⟩

+ 𝑒𝑗,𝑖
⟨

−𝐮(𝑖), 𝐭𝑗,𝑖
⟩] (

−𝜑(𝑖))

+ 1
2
[

𝑝𝑗,𝑖𝜑𝑗,𝑖 − 𝑝𝑗,𝑖𝜑
(𝑖)]𝜑𝑗,𝑖 +

1
2
[

𝑝𝑗.𝑖𝜑𝑗,𝑖 − 𝑝𝑗,𝑖𝜑
(𝑖)] (−𝜑(𝑖)) ,

(17)

where 𝐮𝑗,𝑖 = 𝐮(𝑗) − 𝐮(𝑖), 𝜑𝑗,𝑖 = 𝜑(𝑗) − 𝜑(𝑖), 𝐧𝑗,𝑖 = 𝐀𝑗𝐍𝑗,𝑖∕
‖

‖

‖

𝐀𝑗𝐍𝑗,𝑖
‖

‖

‖

, 
𝐭𝑗,𝑖 =

(

𝐀𝑖 − 𝐀𝑗
)

𝐍𝑗,𝑖∕
‖

‖

‖

(

𝐀𝑖 − 𝐀𝑗
)

𝐍𝑗,𝑖
‖

‖

‖

, 𝑘𝑗,𝑖 = 𝐾𝑗,𝑖
‖

‖

‖

𝐀𝑗𝐍𝑗,𝑖
‖

‖

‖

2
, 𝑘̂𝑗,𝑖 =

𝐾𝑗,𝑖
‖

‖

‖

𝐀𝑗𝐍𝑗,𝑖
‖

‖

‖

‖

‖

‖

(

𝐀𝑖 − 𝐀𝑗
)

𝐍𝑗,𝑖
‖

‖

‖

, 𝑘̃𝑗,𝑖 = 𝐾𝑗,𝑖
‖

‖

‖

(

𝐀𝑖 − 𝐀𝑗
)

𝐍𝑗,𝑖
‖

‖

‖

2
, 𝑒𝑗,𝑖 = 𝐸𝑗,𝑖𝐵𝑗

‖

‖

‖

𝐀𝑗𝐍𝑗,𝑖
‖

‖

‖

, 𝑒𝑗,𝑖 = 𝐸𝑗,𝑖𝐵𝑗
‖

‖

‖

(

𝐀𝑖 − 𝐀𝑗
)

𝐍𝑗,𝑖
‖

‖

‖

, 𝑒𝑗,𝑖 = 𝐸𝑗,𝑖
(

𝐵𝑖 − 𝐵𝑗
)

‖

‖

‖

𝐀𝑗𝐍𝑗,𝑖
‖

‖

‖

, 
𝑒𝑗,𝑖 = 𝐸𝑗,𝑖

(

𝐵𝑖 − 𝐵𝑗
)

‖

‖

‖

(

𝐀𝑖 − 𝐀𝑗
)

𝐍𝑗,𝑖
‖

‖

‖

, 𝑝𝑗,𝑖 = 𝑃𝑗,𝑖𝐵𝑗𝐵𝑗 , 𝑝𝑗,𝑖 = 𝑃𝑗,𝑖𝐵𝑗
(

𝐵𝑖 − 𝐵𝑗
)

, and 𝑝𝑗,𝑖 = 𝑃𝑗,𝑖
(

𝐵𝑖 − 𝐵𝑗
)2. By taking derivatives of the 

transformed potential energy (Eq. (17)) with respect to 𝐮𝑗,𝑖, 𝐮(𝑖), 𝜑𝑗,𝑖, 
and 𝜑(𝑖), we attain the internal spring force, the grounded spring force 
4 
(functioned as the body force), the free charge from the internal spring, 
and the free charge from the grounded spring, respectively, as 

𝐟𝑗,𝑖 = 𝑘𝑗,𝑖𝐧𝑗,𝑖 ⊗ 𝐧𝑗,𝑖𝐮𝑗,𝑖 − 𝑘̂𝑗,𝑖𝐧𝑗,𝑖 ⊗ 𝐭𝑗,𝑖𝐮(𝑖) + 𝑒𝑗,𝑖𝐧𝑗,𝑖𝜑𝑗,𝑖 − 𝑒𝑗,𝑖𝐧𝑗,𝑖𝜑(𝑖), (18)

𝐟𝑖 = 𝑘̂𝑗,𝑖𝐭𝑗,𝑖 ⊗ 𝐧𝑗,𝑖𝐮𝑗,𝑖 − 𝑘̃𝑗,𝑖𝐭𝑗,𝑖 ⊗ 𝐭𝑗,𝑖𝐮(𝑖) + 𝑒𝑗,𝑖𝐭𝑗,𝑖𝜑𝑗,𝑖 − 𝑒𝑗,𝑖𝐭𝑗,𝑖𝜑(𝑖), (19)

𝑞𝑗,𝑖 = 𝑒𝑗,𝑖
⟨

𝐮𝑗,𝑖,𝐧𝑗.𝑖
⟩

− 𝑒𝑗,𝑖
⟨

𝐮(𝑖), 𝐭𝑗.𝑖
⟩

+ 𝑝𝑗.𝑖𝜑𝑗,𝑖 − 𝑝𝑗.𝑖𝜑
(𝑖), (20)

𝑞𝑖 = 𝑒𝑗,𝑖
⟨

𝐮𝑗,𝑖,𝐧𝑗.𝑖
⟩

− 𝑒𝑗,𝑖
⟨

𝐮(𝑖), 𝐭𝑗.𝑖
⟩

+ 𝑝𝑗.𝑖𝜑𝑗,𝑖 − 𝑝𝑗.𝑖𝜑
(𝑖). (21)

Clearly, a conventional piezoelectric spring in the virtual lattice is 
transformed to two nonstandard piezoelectric springs coupled with 
each other in the physical lattice (see Fig.  2b): One is the internal 
piezoelectric spring with a new set of elastic constant 𝑘𝑗,𝑖, piezoelectric 
constant 𝑒𝑗,𝑖, and dielectric constant 𝑝𝑗,𝑖 and along the direction of 𝐧𝑗,𝑖; 
The other is the grounded piezoelectric spring with elastic constant 
𝑘𝑗,𝑖, piezoelectric constant 𝑒𝑗,𝑖 and dielectric constant 𝑝𝑗,𝑖 and along 
the direction of 𝐭𝑗,𝑖. Note that the top and bottom electrodes of the 
internal piezoelectric spring are applied with the electric potential 𝜑(𝑖)

and 𝜑(𝑗), respectively, while the top electrode of the grounded piezo-
electric spring is applied with the electric potential 𝜑(𝑖) and the bottom 
electrode of the grounded piezoelectric spring is electrically grounded. 
Remarkably, cross-coupling between the two piezoelectric springs is 
observed in both mechanical and electrical domains, which we call 
mechanical and electrical Willis coupling, respectively. In particular, 
𝑘𝑗,𝑖 describes the mechanical Willis coupling, where the change in 
length of the grounded spring produces a force on the internal spring 
and vice versa. On the other hand, 𝑝𝑗,𝑖 describes the electrical Willis 
coupling, where the change in the electric potential of the grounded 
spring produces a charge in the internal spring and vice versa. In 
addition to these two types of Willis coupling, piezoelectric responses 
of the two springs are also coupled, e.g. the electric potential applied 
on the grounded spring also generates a force in the internal spring 
through the term 𝑒𝑗,𝑖, and the electric voltage applied on the internal 
spring induces a force on the grounded spring through the term ̂𝑒𝑗,𝑖 (see 
the lower panel in Fig.  2b). Similar properties of the Willis coupling 
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Fig. 3. Design procedures of the transformed piezoelectric lattice. (a) A triangle lattice composed of linear piezoelectric springs with the free length 𝑎 in the virtual space. (b) 
The spatial arrangement of the transformed piezoelectric springs in the physical space, where only internal springs are shown. (c) Rigid masses are properly added between the 
transformed internal piezoelectric springs. (d) A possible ready-to-fabricate metamaterial structure for the realization of the required piezoelectric Willis spring.
also exist in Eqs. (20) and (21), where deformation of the grounded 
spring induces a charge in the internal spring based on 𝑒𝑗,𝑖 and vice 
versa based on 𝑒𝑗,𝑖. Note also that the transformed internal spring 
is no longer along the direction of its virtual spring as 𝐧𝑗,𝑖 ≠ 𝐍𝑗,𝑖. 
Consequently, internal springs cannot be properly connected following 
the geometric setup of the virtual lattice (see the upper panel in Fig. 
2b). To ensure proper connections of the transformed piezoelectric 
springs, we turn point masses in the virtual lattice into rigid-body 
masses in the physical lattice (see Fig.  2c). Since rotational degrees 
of freedom of point masses vanish in the virtual lattice, rotations of 
the rigid-body masses in the physical lattice should be suppressed, 
giving rise to polarity. In summary, the desired piezoelectric responses 
can be realized when the physical lattice satisfies Eqs. (18)–(21) as 
well as the polarity. Piezoelectric Willis coupling and polarity found in 
the physical lattice coincide with those of the continuum piezoelectric 
gauge transformation.

To simplify the control and operation of the transformed piezoelec-
tric lattice, we implement a constant electric potential gauge among 
all nodes of the lattice (𝐵𝑖 = 𝐵𝑗). Further, we ground one of the two 
electrodes on the internal piezoelectric spring (𝜑(𝑖) = 0), and connect 
all the other electrodes within the lattice (𝜑(𝑗) = 𝜑). In doing so, 
we aim to achieve the desired displacement field 𝐮(𝑖) by applying the 
electric potential 𝜑 throughout the lattice. With these assumptions, 
the constitutive relations of the transformed piezoelectric springs are 
reduced to 
𝐟𝑗,𝑖 = 𝑘𝑗,𝑖𝐧𝑗,𝑖 ⊗ 𝐧𝑗,𝑖𝐮𝑗,𝑖 − 𝑘̂𝑗,𝑖𝐧𝑗,𝑖 ⊗ 𝐭𝑗,𝑖𝐮(𝑖) + 𝑒𝑗,𝑖𝐧𝑗,𝑖𝜑, (22)

𝐟𝑖 = 𝑘̂𝑗,𝑖𝐭𝑗,𝑖 ⊗ 𝐧𝑗,𝑖𝐮𝑗,𝑖 − 𝑘̃𝑗,𝑖𝐭𝑗,𝑖 ⊗ 𝐭𝑗,𝑖𝐮(𝑖) + 𝑒𝑗,𝑖𝐭𝑗,𝑖𝜑, (23)

𝑞𝑗,𝑖 = 𝑒𝑗,𝑖
⟨

𝐮𝑗,𝑖,𝐧𝑗.𝑖
⟩

− 𝑒𝑗,𝑖
⟨

𝐮(𝑖), 𝐭𝑗.𝑖
⟩

+ 𝑝𝑗.𝑖𝜑. (24)

It can be seen that the free charge appears on the internal spring, 
but is absent on the grounded spring (𝑞𝑖 = 0). Further, besides the 
mechanical Willis coupling 𝑘̂𝑗,𝑖, one set of non-standard piezoelectric 
Willis coupling ̂𝑒  remains in the transformed springs. As a result, the 
𝑗,𝑖

5 
voltage applied on the internal spring produces a force on the grounded 
spring. At the same time, the change in length of the grounded spring 
induces a charge on the internal spring. The reduced equations of the 
discrete lattice (Eqs. (22)–(24)) display the same properties as those in 
Eqs. (11)–(13). However, realization of the nonstandard piezoelectric 
properties shown in Eqs. (22)–(24) using discrete lattices presents 
challenges. This type of design has never been attempted.

4. Lattice construction

In this section, we suggest a design guideline to physically construct 
the transformed piezoelectric lattice. First, our attention is focused on 
the spatial arrangement of the interconnected internal springs and rigid 
masses. As an illustrative example, we select a triangular lattice in the 
virtual space (see Fig.  3a), where the point masses are placed at the 
node 𝐱𝑖 and the linear piezoelectric springs with the length 𝑎 are located 
between 𝐱𝑖 and 𝐱𝑗 . We enforce the center of the virtual and transformed 
internal springs remaining in the same position 𝐱𝑖+𝐱𝑗2 , but changing the 
length of the transformed spring to 𝑎𝛾𝑗,𝑖 with 0 < 𝛾𝑗,𝑖 < 1 for proper 
connections. Calculating the direction of each of the internal springs 
𝐧𝑗,𝑖, the positions of all the internal springs are determined as the blue 
lines shown in Fig.  3b. We assign one of the two nodes of each of 
the internal springs adjacent to the virtual node 𝐱𝑖 as the new node 
(e.g. 𝐱(𝑗)𝑖 , 𝑗 = 1, 2, 3,… , 6) to build a rigid polygon mass connecting all 
the transformed internal springs that are originally connected at 𝐱𝑖 in 
the virtual lattice (see Fig.  3c). Duplicating this procedure among the 
nodes in the virtual lattice, the spatial arrangement and geometry of 
the internal springs and rigid masses of the transformed piezoelectric 
lattice are determined.

Next, we propose a physically realizable design to achieve the 
required piezoelectric Willis coupling dictated in Eqs. (22)–(24). For 
this purpose, a gear system incorporated with a piezoelectric torsional 
spring is employed (see Fig.  3d). In particular, the gear system consists 
of two pairs of rack-and-pinion-gear structures. One pair of the gear 
structures connects the rigid mass with its adjacent rigid mass along the 
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Fig. 4. Geometry and numerical simulations of the piezoelectric lattices before and after the transformation. (a) Geometry of a triangular piezoelectric lattice before the 
transformation. (b, c) Simulated displacement fields of the triangular piezoelectric lattice actuated by an electric voltage. Left panel: discrete lattice; Right panel: Continuum material. 
(b) Displacement 𝑢1; (c) Displacement 𝑢2. (d, g) Geometry of two transformed piezoelectric lattices. (e, f, h, i) Simulated displacement fields of the transformed piezoelectric lattices 
actuated by an electric voltage. Left panel: discrete lattice; Right panel: Continuum material. (e, h) Displacement 𝑢1; (f, i) Displacement 𝑢2. The displacement gauge 𝐴11 = −1 in 
(d–f), 𝐴11 = 𝑥2∕𝐿2 + 1 in (g–i).
direction of the internal spring. The other pair of the gear structures 
connects the rigid mass to the reference ground along the direction 
of the grounded spring. A piezoelectric torsional spring composed of 
a piezoelectric hollow cylinder operating in shear mode is installed 
between the two gears. This simple design can realize the required 
mechanical and piezoelectric Willis coupling automatically. For ex-
ample, when the distance between the two rigid masses changes, a 
force is generated in the rack connected to the ground due to the 
deformation of the rotational spring. Similarly, when the rigid mass 
moves, a force is induced in the rack connected between the two rigid 
masses, giving rise to the mechanical Willis coupling. Further, when 
a voltage is applied on the piezoelectric torsional spring, two torques 
are generated on the two gears, leading to two forces in the internal 
and grounded springs as required by the piezoelectric Willis coupling. 
Finally, to suppress rotations of rigid masses, an elastic bar with two 
indentations is introduced between each of the rigid masses and the 
reference ground (see Fig.  3d). Replacing each of the internal springs 
shown in Fig.  3c with the designed gear system results in fabricable 
architected transducers with desired piezoelectric responses.

To validate the design, numerical simulations are performed for 
transformed piezoelectric lattices obtained using presumed displace-
ment and electric potential gauges. A commercial finite element soft-
ware, COMSOL Multiphysics, is employed for the simulation, where 
two-dimensional plane stress assumptions are applied for simplicity. 
We build transformed piezoelectric lattices containing 15 × 16 unit 
cells according to the approach introduced in Fig.  3b, where 𝑎 =
10 mm and 𝛾𝑗,𝑖 = 0.4. The internal and grounded piezoelectric springs 
are modeled using equivalent point forces applied on rigid masses 
described following Eqs. (22)–(24), where 𝐾𝑗,𝑖 = 5.8 × 107 N/m, 𝐸𝑗,𝑖 =
6.62 C/m, and 𝑃𝑗,𝑖 = 1704 F. In simulations, the rigid masses are 
modeled by elastic bodies, but with a modulus large enough to ignore 
their deformation. The horizontal displacement of the right boundary 
is zero (𝑢1(𝑥1 = 𝐿1

2 ) = 0), and the center on the right boundary 
is fixed (𝑢1(𝑥1 = 𝐿1

2 , 𝑥2 = 0) = 0, 𝑢2(𝑥1 = 𝐿1
2 , 𝑥2 = 0) = 0). 

All other boundaries are free. In this way, the piezoelectric lattice 
metamaterial is allowed to elongate or contract along both 𝑥1 and 𝑥2
directions, while eliminating rigid-body translations and rotations. Fig. 
6 
4 shows the lattice structures and their displacement fields 𝑢1 and 𝑢2
from simulations when an electric voltage is applied. For comparison, 
Figs.  4a–4c show the results of the triangular lattice before transfor-
mation. In Figs.  4b and 4c, we also calculate the displacement fields 
of the continuum piezoelectric material for validation. The effective 
continuum piezoelectric material parameters of the lattice are attained 
using a homogenization approach [48]. We calculate the homogenized 
bulk modulus 𝜆 = 25 MPa, shear modulus 𝜇 = 25 MPa, piezoelectric 
coefficients 𝐸113 = −46.3 C/m2, 𝐸333 = 139.0 C/m2 (others are zero), 
and dielectric constants 𝑃11 = 𝑃33 = 8.7×105 F/m (others are zero). The 
triangular lattice is isotropic and homogeneous. Thus, it can be seen 
from Figs.  4b and 4c that the lattice elongates uniformly along the 𝑥1
direction and contracts uniformly along the 𝑥2 direction when applied 
with an electric voltage. This behavior is similar to that of standard 
piezoelectric materials. The results of the discrete lattice and continuum 
material are in excellent agreement.

Next, we implement a displacement gauge in the form of 𝐀𝑇 =
[

𝐴11(𝑥1, 𝑥2) 0
0 1

]

 to modulate the displacement 𝑢1 while keep the 
displacement 𝑢2 unchanged and let the electric potential gauge 𝐵 = 1
(see Figs.  4d–4i). In the first example, we select 𝐴11 = −1 so that 
the elongation along the 𝑥1 direction before transformation becomes 
contraction after transformation (see Fig.  4e). Yet, the displacement 
𝑢2 remains the same contraction before and after the transformation 
(see Fig.  4f). Thus, the piezoelectric lattice shown in Fig.  4d displays 
a negative Poisson’s ratio. Note that both the mechanical and piezo-
electric Willis coupling coefficients 𝑘̂𝑗,𝑖 and 𝑒𝑗,𝑖 are zero in this case, 
since the displacement gauge is constant in space. Consequently, the 
negative Poisson’s ratio is caused by the geometry and polarity of the 
piezoelectric lattice. It can be easily checked that the geometry of the 
lattice is similar to auxetic lattices developed in other studies [54–56]. 
In Fig.  4g, we select 𝐴11 = 𝑥2∕𝐿2 + 1 to produce a deformation profile 
varied with 𝑥2. As expected, the upper part of the piezoelectric lattice is 
compressed and the lower part is extended once the voltage is applied 
(see Figs.  4h and 4i). To realized this non-uniform deformation, both 
the mechanical and piezoelectric Willis coupling coefficients ̂𝑘𝑗,𝑖 and 𝑒𝑗,𝑖
must be nonzero, such that the piezoelectric lattice should be connected 



L. Huang et al. Extreme Mechanics Letters 77 (2025) 102315 
Fig. 5. Geometry and numerical simulations of the transformed piezoelectric lattices. (a, d) Geometry of two transformed piezoelectric lattices. (b, c, e, f) Simulated displacement 
fields of the transformed piezoelectric lattices actuated by an electric voltage. Left panel: discrete lattice; Right panel: Continuum material. (b, e) Displacement 𝑢1; (c, f) Displacement 
𝑢2. The displacement gauge 𝐴12 = 10 cosh

(

𝑥1∕𝐿1
) in (a–c), 𝐴12 = 10 sin

(

𝜋𝑥2∕𝐿2
) in (d–f).
to the ground. Consequently, the desired displacement field is caused 
by the combined effects of material heterogeneity and ground connec-
tions. This type of non-uniform deformation is difficult to be excited 
in conventional piezoelectric materials, as they are homogeneous and 
free-standing.

In Fig.  5, we change the form of the displacement gauge to 𝐀𝑇 =
[

1 0
𝐴12(𝑥1, 𝑥2) 1

]

 to modulate the displacement 𝑢2 in function of 𝑢1, 
while keeping 𝑢1 unchanged. In Figs.  5a–5c, 𝐴12 = 10 cosh

(

𝑥1∕𝐿1
) and 

𝑢2 = 𝑈2−𝐴12𝑈1 so that the piezoelectric lattice undergoes simple shear 
along the 𝑥2 direction when the voltage is applied. Note that, for the 
simple deformation, 𝑢2 is not a linear function of 𝑥1. On the other 
hand, in Figs.  5d–5f, 𝐴12 = 10 sin

(

𝜋𝑥2∕𝐿2
) so that most of the left-

hand side portion of the piezoelectric lattice elongates along the vertical 
direction but the portion near the right-hand side boundary contracts 
due to the Poisson’s effect when the voltage is applied. However, the 
displacement 𝑢1 remains unchanged after the transformation for all 
the cased in Fig.  5. Overall, in Figs.  4 and 5, excellent agreement 
in displacement fields between the transformed piezoelectric lattices 
and their continuum counterpart is observed, which also coincides 
with the expected displacement fields calculated analytically using the 
displacement gauge. The results shown in Figs.  4 and 5 verify the 
validity of the theory and the design.

5. Inverse design

In this section, we show how the piezoelectric gauge transforma-
tion and its related material construction guidelines demonstrated in 
previous sections enable the inverse design of architected piezoelectric 
actuators. We focus on two illustrative examples for this purpose. The 
first example is the inverse design of piezoelectric lattices to achieve a 
desired shape with the application of a voltage, and the second example 
explores the possibility of achieving a desired strain field. Note that 
the applied voltages among all piezoelectric springs in the designed 
lattice are the same. During the inverse design, the first step is to 
determine the displacement field after the transformation. In the first 
example, our goal is to deform a rectangular piezoelectric lattice to a 
circle upon the application of a voltage. To achieve this, we propose 
a mapping scheme for the positions of the discrete nodes before and 
7 
after the deformation: 𝑥′1 = 𝑥1
𝑐1

√

1 − 𝑥22

2𝑟2𝑐22
 and 𝑥′2 = 𝑥2

𝑐2

√

1 − 𝑥12

2𝑟2𝑐12

(see Fig.  6), where 𝑥′1 and 𝑥′2 are the positions of the nodes after 
the deformation, and 𝑐1 = 𝐿1

2𝑟 , 𝑐2 = 𝐿2
2𝑟  with 𝑟 being the radius of 

the deformed circle. As a result, the transformed displacement can 
be determined as 𝑢1

(

𝑥1, 𝑥2
)

= 𝑥′1 − 𝑥1 = 𝑥1
𝑐1

(

√

1 − 𝑥22

2𝑟2𝑐22
− 𝑐1

)

 and 

𝑢2
(

𝑥1, 𝑥2
)

= 𝑥′2 − 𝑥2 =
𝑥2
𝑐2

(

√

1 − 𝑥12

2𝑟2𝑐12
− 𝑐2

)

.

In the second step, the displacement gauge 𝐀𝑇  is identified based 
on the displacement field of the virtual lattice and the desire dis-
placement field of the transformed lattice. It is worth mentioning that 
since the displacement gauge matrix is invertible, zero displacement 
in transformed lattice should be avoided. Further, the displacement 
gauge matrix contains four entities in 2D. However, only two equations 
can be attained from the relationships between the displacement fields 
before and after the transformation. To ensure unique solutions of the 
displacement gauge matrix, we enforce two of the entities in the dis-
placement gauge matrix as known constants. Consequently, four types 
of designs are possible: Design I for 𝐀𝑇 =

[

𝐴11 0
0 𝐴22

]

; Design II for 

𝐀𝑇 =
[

𝐴11 0
𝐴12 1

]

; Design III for 𝐀𝑇 =
[

1 𝐴21
0 𝐴22

]

; and Design IV for 

𝐀𝑇 =
[

1 𝐴21
𝐴12 1

]

. In the last step, the four transformed lattices are 
created following the discrete piezoelectric gauge transformation and 
lattice construction guidelines (see Fig.  7). Numerical simulations are 
performed to validate the desired shape change excited by the applied 
voltage for the four designs shown in Fig.  7, where the required circular 
shapes of deformation are clearly seen. In the simulations, the point in 
the center of the piezoelectric metamaterial is fixed (𝑢1(𝑥1 = 0, 𝑥2 =
0) = 0, 𝑢2(𝑥1 = 0, 𝑥2 = 0) = 0), and the horizontal displacement of 
the center on the upper boundary is zero (𝑢1(𝑥1 = 0, 𝑥2 = 𝐿2

2 ) = 0). 
All other boundaries are free. Consequently, the piezoelectric lattice 
metamaterial can deform freely without rigid-body translations and 
rotations.

In the second example, our aim is to achieve the desired strain field 
by applying a voltage on the designed piezoelectric lattice. We assign 
two normal distribution functions on the two desired normal strains as 
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Fig. 6. Schematic of a geometric mapping from a rectangle to a circle.
Fig. 7. Geometry and numerical simulations of the transformed piezoelectric lattices for desired shape changes. Top row: Geometry; Bottom row: Simulated total displacement 
fields. (a) Design I; (b) Design II; (c) Design III; (d) Design IV.
Fig. 8. Inverse design of a piezoelectric lattice to achieve a desired strain field under a given voltage. (a–d) Desired strain and the corresponding displacement fields. (a) Normal 
strain 𝜀11; (b) Normal strain 𝜀22; (c) Displacement 𝑢1; (d) Displacement 𝑢2. (e) Geometry of the designed piezoelectric lattice. (f–h) Simulated displacement fields of the piezoelectric 
lattice applied with an electric voltage. (f) Total displacement field; (g) Displacement 𝑢1; (h) Displacement 𝑢2.
𝜀11 = 1
√

2𝜋
𝑒
−
(

𝑐1𝑥1∕𝐿1
)2

2  and 𝜀22 = 1
√

2𝜋
𝑒
−
(

𝑐2𝑥2∕𝐿2
)2

2 , where 𝑐1 = 𝑐2 = 4 (see 
the strain fields in Figs.  8a and 8b). The shear strain is enforced zero, 
8 
satisfying the strain compatibility conditions. The desired displacement 
fields are then obtained by calculating the integral of the strain fields. 
In the calculations, we implement the same displacement boundary 
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conditions as those in Fig.  7. The desired displacement fields 𝑢1 and 
𝑢2 are shown in Figs.  8c and 8d, respectively. It can be seen that 𝑢1
is nearly constant in the left and right portions of the lattice, and 
𝑢2 is nearly invariant on the top and bottom portions. We employ 
Design I to attain the structure of the transformed lattice shown in 
Fig.  8e. Numerical simulations are performed to validate the design 
of the transform lattice. Figs.  8f–8h show the total displacement, the 
displacement 𝑢1 and 𝑢2 when the voltage is applied on the piezoelec-
tric lattice. Excellent agreement is clearly seen between the desired 
and simulated displacement fields. Finally, it may need to mention 
that the piezoelectric metamaterials designed can be realized using 
pin-connected rods [57], or by embedding fabric materials into the 
connections between thin beams and large rigid-body masses [58] to 
improve fracture and fatigue resistance.

6. Conclusion

In summary, we develop continuum and discrete piezoelectric gauge 
transformations for the inverse design of architected piezoelectric trans-
ducers to achieve an arbitrary desired displacement field with the 
application of an electric voltage. We critically analyze the physical 
principles of the piezoelectric polarity and Willis coupling required by 
the transformation. According to the discrete transformation, a lattice 
design guideline is proposed for the construction of the transformed 
piezoelectric springs. We also suggest a ready-to-fabricate design to 
realize the piezoelectric polar Willis springs using metamaterial struc-
tures. The piezoelectric gauge transformation is validated through a 
range of numerical simulations. Some nonstandard and appealing dis-
placement control functions due to piezoelectric actuation are demon-
strated numerically. Detailed inverse design procedures for achieving 
the desired shape changes and strain-field control are shown in the 
last section. The fast analytical inverse design approach can benefit 
the development of advanced actuators used in ultrasonics, robotics, 
and other piezoelectric devices. The inverse design strategy enabled by 
piezoelectric gauge transformation is readily to be extended to other 
types of responsive materials, e.g. flexoelectric materials where the 
strain gradient can be flexibly controlled by designing microstructures 
when the electric polarization is present.
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