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ARTICLE INFO ABSTRACT
Keywords: Piezoelectric lattices with delicately designed microscopic geometry are powerful building blocks to construct
Transformation elasticity integrated sensors and actuators with versatile, yet unconventional, responses absent from bulk materials.

Lattice metamaterials However, the inverse design of the microscopic geometry to achieve a sought-after electromechanical response

remains elusive. Here, we suggest an analytical approach, called piezoelectric gauge transformation, to design
piezoelectric lattice transducers that can deform to an arbitrary desired displacement field when a voltage
is applied. We first develop continuum piezoelectric gauge transformation and find that the transformed
piezoelectric material displays piezoelectric polarity and Willis coupling in the sense that the applied electric
field generates asymmetric stress and body force, and both rigid body rotation and translation induce electric
charges. To design this polar and Willis-type piezoelectric material, we develop discrete piezoelectric gauge
transformation and propose feasible lattice design guidelines. Numerical simulations are performed to validate
the piezoelectric gauge transformation and demonstrate a range of appealing displacement control functions.
The study presents a complete theoretical framework for the inverse design of lattice transducers to achieve
arbitrary desired actuated displacement fields, beneficial to the development of soft actuators, robotics, and
other piezoelectric devices.

Piezoelectric transducers
Displacement control

1. Introduction a way similar to that of mechanical metamaterials [31-33]. Some
nonstandard electromechanical properties and responses absent in bulk

Designing piezoelectric materials with desired electromechanical materials (e.g. designed anisotropy and directional response) have been
responses is a key issue of fundamental importance for the application demonstrated in piezoelectric lattices [34-36]. However, the inverse
of piezoelectric devices ranging from, traditionally, sonar systems [1,2], design of piezoelectric lattices to achieve desired electromechanical
pressure and force sensors [3,4], ultrasonic actuators [5,6], energy responses remains elusive. On one hand, the solution of the inverse
harvesters [7,8], medical imaging [9,10], clock generators [11,12], problem is not guaranteed to be unique or stable. On the other hand,

and scanning probe microscopes [13,14], to, currently, soft electron-
ics [15,16], soft robotics [17,18], sustainable technologies [19,20], and
precise as well as personalized medical devices [21-24]. Often, elec-
tromechanical properties and responses of piezoelectric materials are
determined by their crystallographic structures and compositions [25].
Different techniques (e.g. doping) have been suggested to change crys-
tallographic structures to control properties of piezoelectric materials.
However, limitations still exist, e.g. coupled mechanical flexibility and
sensitivity and a narrow range of piezoelectric anisotropy [26,27]. Re-
cent breakthroughs in additive manufacturing allow the construction of
three-dimensional, and multi-material, piezoelectric lattices composed
of a set of small piezoelectric beams on the microscopic scale [28-30].
The geometric degrees of freedom on the fabricable microscopic scale
enlarge the design space of piezoelectric properties and responses in

the inverse design of piezoelectric lattices involves complex interaction
between elasticity and electricity.

Here, we suggest a simple analytical approach to design piezoelec-
tric lattice transducers that can deform to a desired displacement field
under a given electric voltage (see Fig. 1a). The analytical approach
is formulated by extending transformation elasticity to transformation
piezoelectricity. Transformation elasticity, widely known for the de-
sign of elastic cloaks, builds the equivalency between the change in
curvilinear coordinates and the change in material parameters [37-39].
Since its discovery, transformation elasticity has been an efficient tool
for calculating material parameters to control the wave trajectories
described by the change in coordinates. Unlike transformation optics
and acoustics, the form of the transformed constitutive relations in
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Fig. 1. Schematic representation of continuum piezoelectric gauge transformation for the inverse design of piezoelectric materials. (a) The goal of the inverse design is to calculate
piezoelectric material parameters to achieve the desired displacement field with the application of an electric field. (b) During the inverse design, we first assume a piezoelectric
material in the virtual space and calculate the displacement field with the application of an electric field. Based on the desired displacement field, we find the corresponding
displacement and electric potential gauges. The required piezoelectric material parameters are solved by implementing continuum piezoelectric gauge transformation. The design

piezoelectric material will display the desired displacement field automatically.

elasticity depends on the displacement gauge implemented during the
transformation. For example, using the Milton-Brian-Willis gauge, the
transformed constitutive relations display Willis coupling, where the
stress is symmetric, but couples with velocity [37,38,40]. On the other
hand, for the Brun—-Guenneau-Movchan gauge, Willis coupling disap-
pears, but the stress becomes asymmetric, and the elasticity tensor lacks
minor symmetry [41-47]. It is worth mentioning that although the
two gauges are common for cloaking and wave control purposes, the
displacement gauge is not limited to the two, which, actually, can be
arbitrary and manipulated intentionally. In particular, imposing the dis-
placement gauge as a design variable, while keeping the coordinates the
same during transformation, allows the control of displacement fields
in solid materials at will [38,48]. This specific version of transformation
elasticity is called gauge transformation. Remarkably, the materials
for displacement control with a general displacement gauge display
Willis coupling and polar properties at the same time. To design this
polar Willis material, a discrete version of the gauge transformation has
been suggested, where the transformation is operated among discrete
lattices, rather than the continuum medium considered in conven-
tional transformation methods [39,48,49]. However, what nonstandard
piezoelectric properties arise when employing gauge transformation in
piezoelectricity and how to implement discrete transformation to de-
sign piezoelectric lattice transducers to achieve a desired displacement
field under a given electric voltage are still unknown.

In this study, we first operate the gauge transformation, by consider-
ing both the displacement gauge and the electric potential gauge, over
a continuum piezoelectric material to calculate the electromechanical
properties of the transformed piezoelectric solid for achieving a desired
displacement field when the transformed piezoelectric solid is excited
with the given electric voltage. We critically analyze the origin and
consequences of polarity and Willis coupling in piezoelectricity as a
result of the transformation. To design the polar and Willis-type piezo-
electric materials, we perform the discrete gauge transformation over
piezoelectric lattices. On the basis of the discrete piezoelectric gauge
transformation, a lattice design guideline is suggested to construct the
geometry of desired polar Willis piezoelectric lattices. Numerical simu-
lations are performed to validate both the continuum and the discrete
piezoelectric gauge transformations. Finally, we show procedures and
examples of inverse design of lattice transducers to achieve the desired
shape changes and strain fields under a given electric voltage. The study
presents an analytical approach to guide the inverse design of lattice

transducers, beneficial to the design of soft actuators, robotics, and
other piezoelectric devices.

2. Piezoelectric gauge transformation

In this section, we formulate the continuum piezoelectric gauge
transformation to calculate the electromechanical properties of the
transformed piezoelectric materials. In the transformation, both the dis-
placement and electric potential gauges are implemented. We consider
a virtual piezoelectric solid occupied in x (see the left panel in Fig. 1b).
The piezoelectric solid has the stiffness tensor C, dielectric tensor P and
piezoelectric tensor E, which are defined as

ou, o
T; = Cijkla + Ejji Fr €y
aU; 0P
j
Dy =Ejpo=— Pkla_xl’ 2
1
where T;;, D;, U;, and ¢ denote the Cauchy stress tensor, electric

jo
displacerrjlent, displacement, and electric potential of the virtual piezo-
electric solid, respectively. Note that the virtual piezoelectric solid is
free-standing and absent from body torque, such that the stress tensor
is symmetric T;; = T};, and the stiffness and piezoelectric tensors hold
minor symmetry, Cy;y = Cjyy = Cjy and E;j = Ej;. In general, the
displacement U; can be determined from the equations of motion when
an electric voltage is applied to the virtual piezoelectric solid together
with a set of mechanical boundary conditions. To perform the gauge
transformation, we calculate the potential energy density of the virtual
piezoelectric solid, which reads as
aU; 9

1., 9U;0U0; 1, 9¢ 0¢
¢, Lt __p T * L . 3
2 WK ox, ox, 2 Mox, ox; | *ox; ox, 3

[

Note that kinetic energy of the piezoelectric material is ignored in the
derivations for simplicity. Thus, the results presented in the study can
be a good approximation for quasi-static and low-frequency applica-
tions.

To achieve the desired displacement field u(x) under an electric
potential field ¢(x) in the physical (or transformed) piezoelectric solid,
we introduce two gauge fields (see the middle panel in Fig. 1b). One
is the displacement gauge A(x), where u = (AT)_IU. The other is the
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electric potential gauge B(x), where ¢ = B~!¢. As a result, the spatial
gradients of the displacement and the electric potential read

oU; Jdu, 0A

J q 4,
oA, LYy 4
ox; Yox; | ax; "a “)
0 2}
_¢ = B_(p 4+ = 9B — 0. 5)
ox; ox;  O0xy

Next, we let the potential energy density conserve before and after
the transformation by substituting Egs. (4) and (5) into Eq. (3), which

leads to
dp 0B
)+ B (552 + 550)]
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Clearly, the transformed potential energy density depends not only on
the displacement gradient 7 and the electric field 22 but also on the
displacement u; and the electric potential ¢. By taklng derivatives of
the transformed potential energy density & with respect to the gradient
of displacement % the displacement u;, the electric field g(”, and
the electric potential ¢, we can obtain the formulas of stress, body

force, electric displacement, and charge density per volume in the
transformed piezoelectric material, respectively, as

Ea

(6)
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P,BB, a = E/Bf, and g = ng—B;—B. It can be seen from

Egs. (7)-(10) that the 'transformed plezoelectrlc materials behave re-
markably different compared with conventional piezoelectric materials.
Firstly, the body force f) and the charge density per volume y arise in
the transformed constitutive relations. Further, in addition to the con-
ventional piezoelectric coupling term e;;;, the transformed constitutive
relations contain both mechanical and electrical Willis coupling caused
by the spatial variation of the displacement and electric potential
gauges. Specifically, mechanical Willis coupling described by s, in the
study refers to the cross-coupling between stress and displacement, as
well as between body force and displacement gradient, and electrical
Willis coupling described by g, refers to the cross-coupling between
electric displacement and electric potential, as well as between charge
density per volume and electric field. Note that, in a moving frame, the
displacement should be measured with respect to the moving frame,
as the grounded springs k,; of transformed piezoelectric material are
mounted to this moving frame. The mutual coupling also appears in
electromechanical coupling terms, where the electric field generates
the body force through m,, and the electric potential generates the
stress through g; 7 for actuation, and, meanwhile, the displacement
produces the electric displacement through m,; and the displacement
gradient produces the volume charge through g;; for sensing. Together,
Egs. (7)—(10) can be regarded as a general constitutive relation of piezo-
electricity. Secondly, the transformed piezoelectric materials display
polarity. On the one hand, the rigid-body rotation and translation give
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rise to asymmetric stress, as c¢;;; # ¢ # ¢jux and s; # s This
requires a body torque for equilibrium. The polar direction in the study
is defined as the direction of the body torque arising in the transformed
piezoelectric material, which is along (¢;;~0;;)/|0;; — 0;;€;;€,. Further,
since e;;, # e;; and g;; # g;;, the electric field and electric potential
also generate asymmetric stress and body torque in stark contrast to
conventional piezoelectric materials where only symmetric stress is
generated. On the other hand, due to the combination of polarity and
Willis coupling, rigid-body rotation induces not only body force, but
electric field, and electric potential (see the first terms in Egs. (8)—(10)),
whereas the piezoelectric materials found so far are free from rigid-
body rotation. The combined effects of Willis coupling and polarity
have been shown in elasticity [48], but have never been reported in
piezoelectricity.

For the purpose of actuation, it is convenient to select a con-
stant electric potential gauge B such that the piezoelectric constitutive
relations in Egs. (7)-(10) can be simplified as

ou;

1/ _cljkla +5; kuk+eljlaxl’ (11)
ou; P}
J P
Jie = Siji o, + Kyt +myy o, 12)
ou; )
J 4
dy=e; o, +myuy = ny % 13)

Clearly, the charge density per volume and the electric potential dis-
appear in Egs. (11)-(13), and the mechanical behavior can be con-
trolled by the electric field alone. Note also that, in the equations,
the piezoelectric cross-coupling between displacement and electric dis-
placement as well as between electric field and body force sustains. This
piezoelectric Willis constitutive relations coincide with the constitutive
relations attained from elastodynamic homogenization of piezoelectric
composites with asymmetric periodic cells [50-53].

3. Discretization

The continuum piezoelectric gauge transformation offers a clear
view of the underlying macroscopic piezoelectric properties needed
for the desired actuation, but provides no clues on how to design a
lattice displaying the required piezoelectric Willis coupling as well as
the polar properties. Instead of applying numerical methods, e.g. topol-
ogy optimization or data-driven approaches, we consider a simple
piezoelectric lattice (e.g. a triangular lattice) in the virtual space and
perform piezoelectric gauge transformation over the discrete lattice.
Our key hypothesis is that the simple piezoelectric lattice can be
equivalent to a continuum material by homogenization. By performing
the same piezoelectric gauge transformation over the simple lattice
and its equivalent continuum material, the transformed lattice should
satisfy the desired piezoelectric properties transformed from the ho-
mogenized properties of the continuum material automatically. Thus,
we next discretize the continuum piezoelectric gauge transformation
by operating the transformation over discrete lattices. To perform this
procedure, we consider a virtual discrete lattice composed of an array
of linear piezoelectric springs, which can be realized using piezoelectric
bars with electrodes mounted on the top and bottom surfaces (see
Fig. 2a). The piezoelectric spring is placed between two nodes at x()
and x), and the elastic constant, piezoelectric constant, dielectric
constant and direction of the plezoelectrlc spring are denoted as K ;,
E;;, P, and N;; = (x0) —x®) /“x(“ —x@||, respectively. Let U® be
the dlsplacement at the node i and ¢ the electric potential on the
electrode connected to the node i. The constitutive relations of the
virtual piezoelectric spring can be written as

F,,=K;N;;®N,;, (U9 -U) + E; N, (¢ - ¢?), 14

Qj,i = Ejj <(U(j) _ U(i)) ij,i> + le (¢(j) _ ¢(i)) , (15)
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Fig. 2. Schematic representation of discrete piezoelectric gauge transformation for the inverse design of piezoelectric lattices. (a) A virtual lattice consists of an array of piezoelectric
springs. The piezoelectric spring can be realized using a piezoelectric bar with electrodes mounted on the top and bottom surfaces. (b) Transformed piezoelectric springs become
Willis-type piezoelectric springs with both internal and ground springs and are located in different directions in the physical space. Clearly, they cannot form a well-connected
lattice without adjustment. For the Willis-type piezoelectric spring, the voltage applied to the internal spring produces a force on the grounded spring, and the change in length
of the grounded spring induces a charge on the internal spring. (c) Transformed piezoelectric lattice after proper geometric adjustment using rigid masses of different shapes. The
rotational degrees of freedom of the rigid masses are suppressed, leading to the required polarity.

where F;; denotes the spring force applied to the node x® and Q,, rep-

resents the accumulated charge on the electrode connected to the node

x®. Note that the subscript “j, i” does not denote spatial differentiation.
The potential energy of the virtual piezoelectric spring then reads

E;; ((UU) _ U<")) ij.:'> (¢<j> _ ¢<,-))
lpj,i((ﬁ(j) - d)(i))z, 16

where (, ) represents the dot product.

Similar to the continuum piezoelectric gauge transformation, we
introduce the displacement and electric potential gauges for each of
the discrete nodes in the lattice, which are defined as U® = A,Tu®
and ¢ = B,;p", respectively, to achieve the desired displacement u®”
upon the application of the electric potential ¢”. The potential energy
of each of the piezoelectric springs remains the same before and after
the transformation. Implementing u®”’ and ¢ into Eq. (16), we obtain
the formula of the transformed potential energy as

1 i i 2
&= EKj,i((U(J) —U) N+

1 ~ -
i=¢i=5 [k/li (ujimi )+ ki (‘“(’)’tj,i>] (wimi)
1 A~ ~ .
45 (R Qwmya) + %5 (00,4, (—a1,)
[eji<u'i’ /1>+é\ji<_“ ) /r>] Pj.i
+[e//<“11’ n;) +, (- “)t 0] (=0?)

+ § [P,-,i(ﬂ,-,,- ‘@J‘P(')] @jit 5 [1?/'.:"/’/,:' ‘171,:'(/’@] (=),

a7
where u;; = u¥ —u?, ¢;; = oY - ¥, n;; = AN”/‘
tj,. = (A-A)N/ | (A=A N K = HAJ ,,|, kj,,. =
K, [|aN; H“A AN E = KA - ANI,H,e = E;;B,
”ANN“, 5 = EjB (A -A)N| e, = E(B-B) AN,
¢ = Ej (B,-—B/-)“(A,- Aj)Nj,i|’ pii = PuiBBj by = Pj,iBj
(B;—B;), and p;;, = Pj,,-(B,-—Bj)Z. By taking derivatives of the

transformed potential energy (Eq. (17)) with respect to u;,, u®, ¢,
and ¢, we attain the internal spring force, the grounded spring force

k;;, piezoelectric constant ¢,

/\
jl

(functioned as the body force), the free charge from the internal spring,
and the free charge from the grounded spring, respectively, as

f.._k n..@n, .u;

Jilji @Ml kj,nj,®t ul +ej,njl(pj, Ej,i“j,i‘ﬂ(l), 18)

fi=k;t;; ®n; ;- k/ it @t 80, -2t 00, 19
qji=ej (umy) =&, (u®, ti) + P90 — b 07, (20)
g =2 {wymy) = () + 50, — 50", 2D

Clearly, a conventional piezoelectric spring in the virtual lattice is
transformed to two nonstandard piezoelectric springs coupled with
each other in the physical lattice (see Fig. 2b): One is the internal
piezoelectric spring with a new set of elastic constant k; ;, piezoelectric
constant e; ;, and dielectric constant p;; and along the direction of n; ;;
The other is the grounded piezoelectric spring with elastic constant
and dielectric constant p;; and along
the direction of t;;. Note that the top and bottom electrodes of the
internal piezoelectric spring are applied with the electric potential ¢
and @), respectively, while the top electrode of the grounded piezo-
electric spring is applied with the electric potential ¢’ and the bottom
electrode of the grounded piezoelectric spring is electrically grounded.
Remarkably, cross-coupling between the two piezoelectric springs is
observed in both mechanical and electrical domains, which we call
mechanical and electrical Willis coupling, respectively. In particular,
describes the mechanical Willis coupling, where the change in
length of the grounded spring produces a force on the internal spring
and vice versa. On the other hand, ﬁj,[ describes the electrical Willis
coupling, where the change in the electric potential of the grounded
spring produces a charge in the internal spring and vice versa. In
addition to these two types of Willis coupling, piezoelectric responses
of the two springs are also coupled, e.g. the electric potential applied
on the grounded spring also generates a force in the internal spring
through the term ¢, ;, and the electric voltage applied on the internal
spring induces a force on the grounded spring through the term ¢;; (see
the lower panel in Fig. 2b). Similar properties of the Willis couphng
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Fig. 3. Design procedures of the transformed piezoelectric lattice. (a) A triangle lattice composed of linear piezoelectric springs with the free length a in the virtual space. (b)
The spatial arrangement of the transformed piezoelectric springs in the physical space, where only internal springs are shown. (c) Rigid masses are properly added between the
transformed internal piezoelectric springs. (d) A possible ready-to-fabricate metamaterial structure for the realization of the required piezoelectric Willis spring.

also exist in Egs. (20) and (21), where deformation of the grounded
spring induces a charge in the internal spring based on ¢;; and vice
versa based on e;;. Note also that the transformed internal spring
is no longer along the direction of its virtual spring as n;; # N, .
Consequently, internal springs cannot be properly connected following
the geometric setup of the virtual lattice (see the upper panel in Fig.
2b). To ensure proper connections of the transformed piezoelectric
springs, we turn point masses in the virtual lattice into rigid-body
masses in the physical lattice (see Fig. 2c). Since rotational degrees
of freedom of point masses vanish in the virtual lattice, rotations of
the rigid-body masses in the physical lattice should be suppressed,
giving rise to polarity. In summary, the desired piezoelectric responses
can be realized when the physical lattice satisfies Egs. (18)—(21) as
well as the polarity. Piezoelectric Willis coupling and polarity found in
the physical lattice coincide with those of the continuum piezoelectric
gauge transformation.

To simplify the control and operation of the transformed piezoelec-
tric lattice, we implement a constant electric potential gauge among
all nodes of the lattice (B; = B;). Further, we ground one of the two
electrodes on the internal piezoelectric spring (¢ = 0), and connect
all the other electrodes within the lattice (V) = ¢). In doing so,
we aim to achieve the desired displacement field u) by applying the
electric potential ¢ throughout the lattice. With these assumptions,
the constitutive relations of the transformed piezoelectric springs are
reduced to

£ _kj,nj,®nj,u/,—k/,nj,®t D +e; im0 (22)
fi=kt,@nu, -kt @t 0"+t 23)
qji =¢€j; <uj,i!nj,i> - ‘?j,i <u(i)’tjj> +D;ji®- 24

It can be seen that the free charge appears on the internal spring,
but is absent on the grounded spring (g; = 0). Further, besides the
mechanical Willis coupling %, ;1> one set of non-standard piezoelectric
Willis coupling é; ; remains in the transformed springs. As a result, the

voltage applied on the internal spring produces a force on the grounded
spring. At the same time, the change in length of the grounded spring
induces a charge on the internal spring. The reduced equations of the
discrete lattice (Egs. (22)-(24)) display the same properties as those in
Egs. (11)-(13). However, realization of the nonstandard piezoelectric
properties shown in Egs. (22)-(24) using discrete lattices presents
challenges. This type of design has never been attempted.

4. Lattice construction

In this section, we suggest a design guideline to physically construct
the transformed piezoelectric lattice. First, our attention is focused on
the spatial arrangement of the interconnected internal springs and rigid
masses. As an illustrative example, we select a triangular lattice in the
virtual space (see Fig. 3a), where the point masses are placed at the
node x; and the linear piezoelectric springs with the length a are located
between x; and x;. We enforce the center of the virtual and transformed

length of the transformed spring to ay;; with 0 < y;; < 1 for proper
connections. Calculating the direction of each of the internal springs

n; ;, the positions of all the internal springs are determined as the blue
lines shown in Fig. 3b. We assign one of the two nodes of each of
the internal springs adjacent to the virtual node x; as the new node
(e.g. x ) j=1,2,3,...,6) to build a rigid polygon mass connecting all
the transformed lnternal springs that are originally connected at x; in
the virtual lattice (see Fig. 3c). Duplicating this procedure among the
nodes in the virtual lattice, the spatial arrangement and geometry of
the internal springs and rigid masses of the transformed piezoelectric
lattice are determined.

Next, we propose a physically realizable design to achieve the
required piezoelectric Willis coupling dictated in Egs. (22)-(24). For
this purpose, a gear system incorporated with a piezoelectric torsional
spring is employed (see Fig. 3d). In particular, the gear system consists
of two pairs of rack-and-pinion-gear structures. One pair of the gear
structures connects the rigid mass with its adjacent rigid mass along the
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Normalized displacement U,

Continuum

Fig. 4. Geometry and numerical simulations of the piezoelectric lattices before and after the transformation. (a) Geometry of a triangular piezoelectric lattice before the
transformation. (b, ¢) Simulated displacement fields of the triangular piezoelectric lattice actuated by an electric voltage. Left panel: discrete lattice; Right panel: Continuum material.
(b) Displacement u,; (c) Displacement u,. (d, g) Geometry of two transformed piezoelectric lattices. (e, f, h, i) Simulated displacement fields of the transformed piezoelectric lattices
actuated by an electric voltage. Left panel: discrete lattice; Right panel: Continuum material. (e, h) Displacement u,; (f, i) Displacement u,. The displacement gauge A,, = —1 in

(d-f), A, =x,/L, +1 in (g-i).

direction of the internal spring. The other pair of the gear structures
connects the rigid mass to the reference ground along the direction
of the grounded spring. A piezoelectric torsional spring composed of
a piezoelectric hollow cylinder operating in shear mode is installed
between the two gears. This simple design can realize the required
mechanical and piezoelectric Willis coupling automatically. For ex-
ample, when the distance between the two rigid masses changes, a
force is generated in the rack connected to the ground due to the
deformation of the rotational spring. Similarly, when the rigid mass
moves, a force is induced in the rack connected between the two rigid
masses, giving rise to the mechanical Willis coupling. Further, when
a voltage is applied on the piezoelectric torsional spring, two torques
are generated on the two gears, leading to two forces in the internal
and grounded springs as required by the piezoelectric Willis coupling.
Finally, to suppress rotations of rigid masses, an elastic bar with two
indentations is introduced between each of the rigid masses and the
reference ground (see Fig. 3d). Replacing each of the internal springs
shown in Fig. 3c with the designed gear system results in fabricable
architected transducers with desired piezoelectric responses.

To validate the design, numerical simulations are performed for
transformed piezoelectric lattices obtained using presumed displace-
ment and electric potential gauges. A commercial finite element soft-
ware, COMSOL Multiphysics, is employed for the simulation, where
two-dimensional plane stress assumptions are applied for simplicity.
We build transformed piezoelectric lattices containing 15 x 16 unit
cells according to the approach introduced in Fig. 3b, where a =
10 mm and y;; = 0.4. The internal and grounded piezoelectric springs
are modeled using equivalent point forces applied on rigid masses
described following Egs. (22)-(24), where K;; = 5.8 x 107 N/m, E;; =
6.62 C/m, and P;; = 1704 F. In simulations, the rigid masses are
modeled by elastic bodies, but with a modulus large enough to ignore
their deformation. The horizontal displacement of the right boundary
is zero (u;(x; = %) = 0), and the center on the right boundary

is fixed (u(x; = Zx, = 0) = 0, iy(x, = ZLx, = 0) = 0).
All other boundaries are free. In this way, the piezoelectric lattice
metamaterial is allowed to elongate or contract along both x; and x,

directions, while eliminating rigid-body translations and rotations. Fig.

4 shows the lattice structures and their displacement fields u; and u,
from simulations when an electric voltage is applied. For comparison,
Figs. 4a—4c show the results of the triangular lattice before transfor-
mation. In Figs. 4b and 4c, we also calculate the displacement fields
of the continuum piezoelectric material for validation. The effective
continuum piezoelectric material parameters of the lattice are attained
using a homogenization approach [48]. We calculate the homogenized
bulk modulus 4 = 25 MPa, shear modulus u = 25 MPa, piezoelectric
coefficients E,; = —46.3 C/m?, E;3; = 139.0 C/m? (others are zero),
and dielectric constants P;; = P;; = 8.7x 10° F/m (others are zero). The
triangular lattice is isotropic and homogeneous. Thus, it can be seen
from Figs. 4b and 4c that the lattice elongates uniformly along the x;
direction and contracts uniformly along the x, direction when applied
with an electric voltage. This behavior is similar to that of standard
piezoelectric materials. The results of the discrete lattice and continuum
material are in excellent agreement.

Next, we implement a displacement gauge in the form of AT =

AnGax) 0 odulate the displacement u; while keep the

0 1
displacement u, unchanged and let the electric potential gauge B = 1
(see Figs. 4d-4i). In the first example, we select A;; = —1 so that

the elongation along the x,; direction before transformation becomes
contraction after transformation (see Fig. 4e). Yet, the displacement
u, remains the same contraction before and after the transformation
(see Fig. 4f). Thus, the piezoelectric lattice shown in Fig. 4d displays
a negative Poisson’s ratio. Note that both the mechanical and piezo-
electric Willis coupling coefficients I}j’,. and ¢;; are zero in this case,
since the displacement gauge is constant in space. Consequently, the
negative Poisson’s ratio is caused by the geometry and polarity of the
piezoelectric lattice. It can be easily checked that the geometry of the
lattice is similar to auxetic lattices developed in other studies [54-56].
In Fig. 4g, we select Aj; = x,/L, + 1 to produce a deformation profile
varied with x,. As expected, the upper part of the piezoelectric lattice is
compressed and the lower part is extended once the voltage is applied
(see Figs. 4h and 4i). To realized this non-uniform deformation, both
the mechanical and piezoelectric Willis coupling coefficients k jiand é;;
must be nonzero, such that the piezoelectric lattice should be connected
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Normalized displacement U,

Continuum

Fig. 5. Geometry and numerical simulations of the transformed piezoelectric lattices. (a, d) Geometry of two transformed piezoelectric lattices. (b, c, e, f) Simulated displacement
fields of the transformed piezoelectric lattices actuated by an electric voltage. Left panel: discrete lattice; Right panel: Continuum material. (b, e) Displacement u,; (c, f) Displacement

u,. The displacement gauge A, = 10cosh (x,/L,) in (a—c), A, = 10sin (zx,/L,) in (d-f).

to the ground. Consequently, the desired displacement field is caused

by the combined effects of material heterogeneity and ground connec-

tions. This type of non-uniform deformation is difficult to be excited

in conventional piezoelectric materials, as they are homogeneous and
free-standing.

In Fig. 5, we change the form of the displacement gauge to AT =

1

Ap(x,xy) 1
while keeping u; unchanged. In Figs. 5a-5¢, A, = 10cosh (x;/L,) and
u, = U, — A,U; so that the piezoelectric lattice undergoes simple shear
along the x, direction when the voltage is applied. Note that, for the
simple deformation, u, is not a linear function of x;. On the other
hand, in Figs. 5d-5f, A, = 10sin (zx,/L,) so that most of the left-
hand side portion of the piezoelectric lattice elongates along the vertical
direction but the portion near the right-hand side boundary contracts
due to the Poisson’s effect when the voltage is applied. However, the
displacement u; remains unchanged after the transformation for all
the cased in Fig. 5. Overall, in Figs. 4 and 5, excellent agreement
in displacement fields between the transformed piezoelectric lattices
and their continuum counterpart is observed, which also coincides
with the expected displacement fields calculated analytically using the
displacement gauge. The results shown in Figs. 4 and 5 verify the
validity of the theory and the design.

] to modulate the displacement u, in function of u,,

5. Inverse design

In this section, we show how the piezoelectric gauge transforma-
tion and its related material construction guidelines demonstrated in
previous sections enable the inverse design of architected piezoelectric
actuators. We focus on two illustrative examples for this purpose. The
first example is the inverse design of piezoelectric lattices to achieve a
desired shape with the application of a voltage, and the second example
explores the possibility of achieving a desired strain field. Note that
the applied voltages among all piezoelectric springs in the designed
lattice are the same. During the inverse design, the first step is to
determine the displacement field after the transformation. In the first
example, our goal is to deform a rectangular piezoelectric lattice to a
circle upon the application of a voltage. To achieve this, we propose
a mapping scheme for the positions of the discrete nodes before and

2

iome o — X1 ) /o X2 _ X
after the deformation: x| = o 1 307 and x) o 7207
(see Fig. 6), where x| and x) are the positions of the nodes after
: L L, . . .
the deformation, and ¢; = 3t,¢; = 2 with r being the radius of

the deformed circle. As a result, the transformed displacement can
. — ! _ X1
be determined as u; (x;,x;) = x| — x; = =

2
. R
1/1 il and
( ) =x, _x -2
B \XpX) =X =X =7 T3 A

In the second step, the displacement gauge A’ is identified based
on the displacement field of the virtual lattice and the desire dis-
placement field of the transformed lattice. It is worth mentioning that
since the displacement gauge matrix is invertible, zero displacement
in transformed lattice should be avoided. Further, the displacement
gauge matrix contains four entities in 2D. However, only two equations
can be attained from the relationships between the displacement fields
before and after the transformation. To ensure unique solutions of the
displacement gauge matrix, we enforce two of the entities in the dis-
placement gauge matrix as known constants. Consequently, four types

of designs are possible: Design I for AT = AO” AO ] ; Design II for
2
AT = [ An 0 ]; Design III for AT = [ LAy ]; and Design IV for
Ap 1 2
1 A .
AT = A 21| In the last step, the four transformed lattices are

created foﬁowing the discrete piezoelectric gauge transformation and
lattice construction guidelines (see Fig. 7). Numerical simulations are
performed to validate the desired shape change excited by the applied
voltage for the four designs shown in Fig. 7, where the required circular
shapes of deformation are clearly seen. In the simulations, the point in
the center of the piezoelectric metamaterial is fixed (u;(x; = 0,x, =
0) = 0, up(x; = 0,x, = 0) = 0), and the horizontal displacement of
the center on the upper boundary is zero (u;(x; = 0,x, = %) = 0).
All other boundaries are free. Consequently, the piezoelectric lattice
metamaterial can deform freely without rigid-body translations and
rotations.

In the second example, our aim is to achieve the desired strain field
by applying a voltage on the designed piezoelectric lattice. We assign
two normal distribution functions on the two desired normal strains as
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Fig. 6. Schematic of a geometric mapping from a rectangle to a circle.
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Fig. 8. Inverse design of a piezoelectric lattice to achieve a desired strain field under a given voltage. (a—d) Desired strain and the corresponding displacement fields. (a) Normal
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~(ex2/15)*
e 2

(411 /11)*

£ = ——=e 2 and &,, = , where ¢, = ¢, = 4 (see

S

v3

2r
the strain fields in Figs. 8a and 8b). The shear strain is enforced zero,

satisfying the strain compatibility conditions. The desired displacement
fields are then obtained by calculating the integral of the strain fields.
In the calculations, we implement the same displacement boundary
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conditions as those in Fig. 7. The desired displacement fields u; and
u, are shown in Figs. 8c and 8d, respectively. It can be seen that u,
is nearly constant in the left and right portions of the lattice, and
u, is nearly invariant on the top and bottom portions. We employ
Design I to attain the structure of the transformed lattice shown in
Fig. 8e. Numerical simulations are performed to validate the design
of the transform lattice. Figs. 8f~8h show the total displacement, the
displacement u; and u, when the voltage is applied on the piezoelec-
tric lattice. Excellent agreement is clearly seen between the desired
and simulated displacement fields. Finally, it may need to mention
that the piezoelectric metamaterials designed can be realized using
pin-connected rods [57], or by embedding fabric materials into the
connections between thin beams and large rigid-body masses [58] to
improve fracture and fatigue resistance.

6. Conclusion

In summary, we develop continuum and discrete piezoelectric gauge
transformations for the inverse design of architected piezoelectric trans-
ducers to achieve an arbitrary desired displacement field with the
application of an electric voltage. We critically analyze the physical
principles of the piezoelectric polarity and Willis coupling required by
the transformation. According to the discrete transformation, a lattice
design guideline is proposed for the construction of the transformed
piezoelectric springs. We also suggest a ready-to-fabricate design to
realize the piezoelectric polar Willis springs using metamaterial struc-
tures. The piezoelectric gauge transformation is validated through a
range of numerical simulations. Some nonstandard and appealing dis-
placement control functions due to piezoelectric actuation are demon-
strated numerically. Detailed inverse design procedures for achieving
the desired shape changes and strain-field control are shown in the
last section. The fast analytical inverse design approach can benefit
the development of advanced actuators used in ultrasonics, robotics,
and other piezoelectric devices. The inverse design strategy enabled by
piezoelectric gauge transformation is readily to be extended to other
types of responsive materials, e.g. flexoelectric materials where the
strain gradient can be flexibly controlled by designing microstructures
when the electric polarization is present.
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