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Extremal materials are a class of Cauchy materials
with rank-deficient elastic matrix, i.e. exhibiting one
or multiple zero eigenvalues and allowing energy-
free deformation modes. In a previous study, we
demonstrated that, in the Cauchy framework, no
propagating Rayleigh wave exists when the extremal
materials’ principal axis is parallel to the free
surface (Wei et al. 2024 J. Mech. Phys. Solids 193,
105842. (doi:10.1016/j.jmps.2024.105842)). However, a
question is raised naturally: can any extremal material
support propagating Rayleigh wave? In this paper, we
theoretically investigate the propagation of Rayleigh
waves in any extremal materials based on the Cauchy
framework. Dispersion relations and polarizations of
Rayleigh waves in extremal materials are derived
analytically. Designing a conservative function in
the weak form, we prove the non-existence of
propagating Rayleigh waves in any two-dimensional
extremal materials, and calculate the corresponding
Rayleigh modes analytically. Moreover, we illustrate
the existence condition for propagating Rayleigh
waves in special three-dimensional extremal materials
analytically in a similar way. A Rayleigh wave isolator
is proposed and demonstrated by using a piece of
extremal material. This study provides a continuum
model for exploring surface waves in any extremal
materials and paves the way to stimulate applications
of extremal materials for controlling surface waves.

2025 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 J

ul
y 

20
25

 

https://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2024.0960&domain=pdf&date_stamp=2025-07-23
mailto:maotang@pku.edu.cn
mailto:hugeng@bit.edu.cn
http://orcid.org/0000-0002-8915-1897
http://orcid.org/0000-0002-7387-5743
http://dx.doi.org/doi:10.1016/j.jmps.2024.105842


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A481:20240960

..........................................................

1. Introduction
Rayleigh waves, propagating along a free plane surface while decaying exponentially away
from the surface, have long been a topic of utmost importance in seismology, non-destructive
evaluation and sensitive detector development [1–8]. Their propagation characteristics in semi-
infinite Cauchy elastic media have been investigated by many prominent researchers in both
physics and mathematics communities since the twentieth century [1,9–14]. Many elegant
methods and results are well documented. For example, Stroh put forward a unified formalism
[10] suitable for any anisotropy of elasticity and brought unprecedented vigour and vitality for the
study of Rayleigh waves. Based on the Stroh formalism, Barnet, Lothe and Chadwick extended
and exploited the Stroh formalism by using the Barnet–Lothe integrals and the surface impedance
tensor to analyse the uniqueness and existence issues of Rayleigh waves on the free surface of
anisotropic linear elastic materials [15–18]. For elastic topological insulators that have attracted a
lot of attention in recent years, their topological edge states can also be treated as Rayleigh waves
[19–26]. However, such Rayleigh waves occur on free surfaces of artificial phononic crystals with
geometry or material inhomogeneity rather than on free surface of homogeneous solids, and they
are robust to disorders as well as fabrication imperfections [23,27].

In recent decades, with the development of elastic metamaterials, some constraints on elasticity
tensor have been gradually relaxed. For instance, by allowing external energy exchange, or by
careful microstructure design, the constraints on major [28,29] and minor [30–32] symmetry
of elasticity tensor can be released. In addition, the elastic modulus can turn negative if
resonance is introduced [33–35]. These extensions make continuum mechanics more powerful
in characterizing complex phenomena and manipulating elastic waves in unprecedented ways.

Another important extension is to consider elastic materials with rank-deficient elasticity
tensors, named as extremal materials. They are mathematically defined as elastic materials whose
elasticity tensor may be represented as a 6 × 6 matrix using Voigt or Kelvin notation with N ≥ 1
zero eigenvalues ([36]; see also [37]), giving rise to energy-free deformation modes (also referred
to as easy deformation modes or zeros modes). According to Milton & Cherkaev [36], depending
on N, the extremal materials are referred to as unimode materials (N = 1), bimode materials
(N = 2), trimode materials (N = 3), quadramode materials (N = 4) and pentamode materials
(N = 5). These materials can be constructed based on squares or beams connected by extremally
thin parts [38–42] or soft materials [43]. Benefiting from their elasticity tensors being no longer
positive definite, extremal materials show exotic ability in manipulating elastic/acoustic bulk
waves [44], which are unavailable in conventional solids. For instance, underwater acoustic cloak
[45,46], polarization tailoring [47,48], phonon polarizer [49,50], zero-refractive-index for elastic
wave [44], static ‘unfeelability’ mechanical cloak [51], birefringent elastic metamaterials [52], low-
frequency sound insulation [53,54], seismic wave alleviation [55], just to name a few. Since only
the static mechanical property is used without resonance, the devices made of solid extremal
elastic metamaterials are intrinsically broadbanded and are of great value in controlling elastic
waves.

In a previous study [56], we demonstrated that, in the Cauchy framework, Rayleigh waves
cannot propagate in two-dimensional extremal materials when the principal material axis is
parallel to the free planar surface. While this is a very specific case, one naturally raises the
question: do all extremal materials fail to support the propagating Rayleigh waves, and what are
their characteristics? In this study, we follow the Stroh formalism [57] to analyse Rayleigh waves
in extremal materials analytically. In the previous work [56], only the case where the principal
axis of the materials is parallel to the normal of free surface is considered. In such a case, we
verified either the material supports Rayleigh surface waves with zero phase velocity or there
is no Rayleigh surface mode. In contrast, here we explore general extremal materials, namely,
det(Cij) = 0, and obtain stronger conclusions.

More precisely, we focus on the study of Rayleigh waves of extremal materials in the
Cauchy framework, whose elasticity tensor may be represented as a two-dimensional 3 × 3
matrix and three-dimensional 6 × 6 matrix using Voigt or Kelvin notation. First, we design
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Figure 1. Schematic plot of Rayleigh surface waves propagating on the free surface of a semi-infinite elastic material in two
dimensions.

Table 1. Material types and Rayleigh modes in two-dimensional extremal materials.

material type elastic matrices case Rayleigh modes

unimode C=

⎡
⎢⎣
a2 e f

e b2 g

f g d2

⎤
⎥⎦ det(T) �= 0 u=

[
−gξ ∗ − id2

d2ξ ∗ + if

]
exp(ξ ∗kz + ikx), c = 0

ξ ∗ =
√−�

2|b2d2−g2| − i f b2−eg
2(b2d2−g2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C=

⎡
⎢⎣
a2 0 0

0 b2 0

0 0 0

⎤
⎥⎦ det(T)= 0 u=

[
û1
0

]
exp(ξ kz + ik(x − ct)), ρc2 = a2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

biomode C=

⎡
⎢⎣
a2 ab ad

ab b2 bd

ad bd d2

⎤
⎥⎦ det(T)= 0 u=

[
bξ + id

−dξ − ia

]
exp(ξ kz + ikx), c = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C=

⎡
⎢⎣
a2 0 0

0 0 0

0 0 0

⎤
⎥⎦ det(T)= 0 u=

[
û1
0

]
exp(ξ kz + ik(x − ct)), ρc2 = a2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

else no Rayleigh mode
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a conservative function by choosing a special test function in the weak form. Using this
function, we prove the non-existence of propagating Rayleigh waves in two-dimensional extremal
materials. We further calculate the corresponding Rayleigh modes analytically. Then we illustrate
the existence condition of propagating Rayleigh waves in special three-dimensional extremal
materials analytically. In three dimensions, we prove that there is no propagating Rayleigh wave
in pentamode and quadramode materials, in trimode materials when the rank of characteristic
force vectors (CFVs) is 3. Finally, a Rayleigh wave isolator, which blocks the propagation of surface
waves on a solid free surface is showcased.

We summarize the material types and Rayleigh modes in two-dimensional extremal materials
in table 1, and those for three-dimensional extremal materials in table 2. Here, we assume k > 0
and Re(kξ ) > 0.

The rest of this paper is organized as follows. In §2, we demonstrate that propagating Rayleigh
waves cannot survive in any two-dimensional extremal materials in the Cauchy framework. The
dispersion relations and polarizations are also derived analytically in detail. In §3, we illustrate

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 J

ul
y 

20
25

 



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A481:20240960

..........................................................

Table 2. Material types and Rayleigh modes in three-dimensional extremal materials.

material type elasticity matrices case Rayleigh modes

pentamode Cijkl = S(1)ij S
(1)
kl rank(S3)= 1 u= Â1 exp(ξ kz + ikx), c = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(S3ξ + iS1)Â1 = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rank(S3)= 0 u1 =

⎡
⎢⎣

−S12A1 exp(ξ1kz)

S11A1 exp(ξ1kz)

A2 exp(ξ2kz)

⎤
⎥⎦ exp(ikx), c = 0,

or
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u2 =

⎡
⎢⎣
S11
S12
0

⎤
⎥⎦ exp(ξ kz) exp(ik(x − ct)),

ρc2 = S211 + S212,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

quadramode Cijkl =
2∑
r=1

S(r)ij S
(r)
kl , rank(S3)= 2 u= Â1 exp(ξ kz + ikx), c = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(S3ξ + iS1)Â1 = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rank(S3)= 1 or 0 no propagating Rayleigh wave standing
(Rayleigh modes are omitted here)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

trimode Cijkl =
3∑
r=1

S(r)ij S
(r)
kl , rank(S3)= 3 no propagating Rayleigh wave standing

(Rayleigh modes are omitted here)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

else may exist propagating Rayleigh waves.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

unimode or biomode may exist propagating Rayleigh waves
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the existence condition of Rayleigh waves in three-dimensional extremal materials. In §4, a
Rayleigh wave isolator is proposed and demonstrated, using both continuum and discrete model
as an application. Finally, we summarize the main findings of this work in §5.

2. Two-dimensional general anisotropic extremal materials
Consider Rayleigh surface waves in a homogeneous Cauchy elastic material, propagating along
a free surface z = 0, as shown in figure 1. In the Cartesian coordinate system {x, z}, the motion is
governed by

σij,j = ρ
∂2ui

∂t2 , σij = Cijkluk,l, (2.1)

where σ ij is the symmetric stress tensor, ρ the mass density, ui the displacement, t the time and
Cijkl the fourth-order elasticity tensor, respectively. The indices i, j, k, l ∈ {x, z} are also denoted as
{1, 2} without making any confusion. Repeated ones denote Einstein summation. The comma in
uk ,l denotes partial differentiation.

For a two-dimensional general anisotropic Cauchy material in Voigt or Kelvin notation, the
elasticity matrix takes the form

C =

⎡
⎢⎣a2 e f

e b2 g
f g d2

⎤
⎥⎦ , (2.2)

where a2 = C1111, b2 = C2222, d2 = C1212,e = C1122, f = C1112 and g = C2212 are any real numbers that
make det(C) ≥ 0 hold. Instead of a positive definite C for traditional materials, extremal materials
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are characterized by

det(C) = a2b2d2 + 2efg − f 2b2 − e2d2 − a2g2 = 0. (2.3)

Following the Stroh formalism, we define Tik = Ci2k2, Rik = Ci1k2, Qik = Ci1k1. This gives rise to
three matrices [58]

T =
[

d2 g
g b2

]
, R =

[
f e

d2 g

]
and Q =

[
a2 f
f d2

]
. (2.4)

In the semi-infinite elastic material (z < 0), displacement of a Rayleigh mode takes the form
u = ûekξzeik(x−ct) with Re(ξ ) > 0 [11], where k denotes the wavenumber, i = √−1 the imaginary
unit, c the phase velocity and ξ the decay factor. Instead of one single mode, we consider a possible
total evanescent mode with displacement

u =
[

U(kz)
V(kz)

]
exp(ik(x − ct)) = A(kz) exp(ik(x − ct)). (2.5)

The amplitude vector A(kz) is governed by the following ordinary differential equations [59]:

TA′′ + i(R+RT)A′ − QcA = 0. (2.6)

Here and in the sequel, kz is taken as the independent variable, and ( · )
′ = d( · )/d(kz). Qc = Q −

ρc2I, where I is the identity matrix.
For the evanescent wave, it holds that

lim
z→−∞ A(kz) = lim

z→−∞ A′(kz) = 0. (2.7)

In addition, the traction-free condition

ti = Cijkluk,lnj = 0, at z = 0, (2.8)

with the normal vector n = [0, 1]T leads to

TA′(0) + iRTA(0) = 0. (2.9)

Consider the weak form of equation (2.1)

∫
Ω

(
Cijklūk,jl − ρ

∂2ūi

∂t2

)
δvidΩ = 0, (2.10)

where Ω is any control volume, and δvi is the test function. In particular, we choose Ω = [ − π/k,
π/k] × (−∞, kz] and δvi = ui,2. Then, the weak form yields

∫
Ω

(
Cijklūk,jl − ρ

∂2ūi

∂t2

)
ui,2dΩ = 0. (2.11)

Using

A′ · TA
′′ = (A′ · TA

′
)′ − A′′ · TA

′ = (A′ · TA
′
)′ − Ā′ · TA′′,

A′ · (R+RT)A
′ = A

′ · (R+RT)A′,

A′ · QcA = (A · QcA)′ − A · QcA
′ = (A′ · QcA)′ − Ā′ · QcA, (2.12)
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together with equation (2.6), we rewrite equation (2.11)

0 =
∫ kz

−∞

(
Cijklūk,jl − ρ

∂2ūi

∂t2

)
ui,2d(kz)

=
∫ kz

−∞
{TA

′′ − i(R+RT)A
′ − QcA} · A′d(kz)

=
∫ kz

−∞
(A′ · TA

′ − A · QcA)′ − A
′ · (TA′′ + i(R+RT)A′ − QcA)d(kz)

= (A′ · TA
′ − A · QcA)|kz

−∞. (2.13)

According to equation (2.7), the above term vanishes at kz → −∞. Therefore, the function

Φ(A(kz)) = A′ · TA
′ − A · QcA = 0. (2.14)

This is key to our proof for non-existence of propagating Rayleigh waves. According to
the coefficient matrix in equation (2.9), we discuss two cases: one is det(T) �= 0, the other is
det(T) = 0. When det(T) �= 0, such anisotropic material can only be a unimode material. However,
when det(T) = 0, such anisotropic material can either be a bimode material or a unimode
material [44].

(a) Case 1:det(T) �= 0
Combining equations (2.3) and (2.4), we get

RT−1RT = Q. (2.15)

Substituting equations (2.9) and (2.15) into equation (2.14) gives

0 = Φ(A(0))

= A′(0) · TA
′
(0) − A(0) · QcA(0)

= A(0) · (RT−1RT − Qc)A(0)

= A(0) · (N3 + ρc2I)A(0)

= ρc2|A(0)|2

=
(

ρ

k2 u̇Hu̇
)∣∣∣∣

kz=0
, (2.16)

where the matrix N3 = RT−1RT − Q is a significant matrix defined in the Stroh formalism [58].
Specifically, N3 = RT−1RT − Q = Q − Q = 0 in this case. The kinetic energy at the surface is zero.
Since ρ �= 0, unless c = 0, it must hold A(0) = 0, and accordingly A′(0) = 0 as well. Then, we obtain
the trivial equilibrium for equation (2.1).

Notice that the matrix N3 is a semi-negative definite matrix in the Stroh formalism for materials
with positive definite C [58]. So the equation A(0) · (−N3)A(0) = ρc2|A(0)|2 can be regarded as the
total energy of the system being equally divided between potential energy and kinetic energy
at the surface. However, in extremal materials with det(T) �= 0, equation (2.15) holds and N3 = 0,
which results in the potential energy and the kinetic energy both being zero at the surface.

In conclusion, propagating Rayleigh wave (c �= 0) does not exist in two-dimensional extremal
material for the case with det(T) �= 0.
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(b) Case 2:det(T)= 0
This is a degenerate case, so we need to discuss in detail. According to equation (2.6), the eigen-
equation for A reads

0 = det(Tξ2 + i(RT+R)ξ − Qc)

= (b2d2 − g2)ξ4 + 2i(b2f − ge)ξ3 + [ρc2(b2 + d2) − a2b2 − 2fg + 2d2e + e2]ξ2

+ 2i[ρc2(f + g) − a2g + ef ]ξ + (ρc2 − a2)(ρc2 − d2) − f 2. (2.17)

In the following analysis, we are only interested in right propagating waves with Re(ξ ) > 0 to
ensure that the wave decays exponentially along the − z-direction.

Then, combining equations (2.6), (2.7) and (2.9) yields the equation for the phase velocity c.
When substituting c back into equations (2.6) and (2.17), the decay factor ξ and displacement u
may be obtained.

Considering equation (2.3) and det(T) = 0, we find bf = ±ed and fg = ed2. Then, both the quartic
and cubic coefficients of the eigen-equation (2.17) are zero, namely

0 = [ρc2(b2 + d2) − a2b2 + e2]ξ2 + 2i[ρc2(f + g) − a2g + ef ]ξ + (ρc2 − a2)(ρc2 − d2) − f 2. (2.18)

So there is only one partial wave for any Re(kξ ) > 0 satisfying the requirement of equation of
motions

u =
[

û1
v̂1

]
exp(ξkz) exp(ik(x − ct)) = Â1 exp(ξkz) exp(ik(x − ct)). (2.19)

The amplitude of u is non-zero to rule out the trivial equilibrium. Inserting equation (2.19) into
equations (2.6) and (2.8) yields

TÂ1ξ
2 + i(RT+R)Â1ξ − QcÂ1 = 0 (2.20)

and

TÂ1ξ + iRTÂ1 = 0, (2.21)

respectively. Since ρ �= 0, there are only three possible circumstances: either c = 0, or Â1 = 0, or
d = e = f = g = 0 with a �= 0 and c =

√
a2/ρ. (See appendix A for detail.)

The first circumstance implies that the Rayleigh wave phase velocity is zero, hence not
propagating. The second circumstance represents again the trivial equilibrium. The third
circumstance leads to the following surface wave for any Re(kξ ) > 0,

u =
[

û1
0

]
exp(ξkz) exp

(
ik
(

x −
√

a2/ρt
))

. (2.22)

This is a rather special situation as the elastic tensor essentially has only one non-zero
component C1111 = a2 and the material behaves like a one-dimensional material. So, this is not
regarded as a generic propagating Rayleigh wave, and we discard this case.

As a conclusion, there is no propagating Rayleigh wave in two-dimensional extremal material.

(c) Rayleigh modes
In this subsection, we will examine the characteristics of standing Rayleigh waves in extremal
materials. First, we derive the surface wave displacement field for a two-dimensional general
anisotropic extremal material, including its polarization and decay factor. Then, as an example to
illustrate our findings, we examine the case of orthotropic extremal materials, which is oriented
at an angle of θ with respect to the free plane surface.

According to equation (2.9), two cases need to be examined, i.e. det(T) �= 0 or det(T) = 0. In this
section, we discuss the first case below, while the second case is discussed in appendix A.
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Substituting c = 0 and equation (2.3) into the eigen-equation (2.17) yields

1
b2d2 − g2 [(b2d2 − g2)ξ2 − (b2f − eg)ξ − (fg − d2e)]2 = 0. (2.23)

This quartic equation has two double roots

ξ1 = ξ2 = −i
f b2 − eg + √

�

2(b2d2 − g2)

and ξ3 = ξ4 = −i
f b2 − eg − √

�

2(b2d2 − g2)
, (2.24)

where
� = (f b2 − eg)2 − 4(b2d2 − g2)(fg − ed2). (2.25)

The double root with Re(ξ ) > 0 is

ξ∗ = ξ1 = ξ2 =
√−�

2|b2d2 − g2| − i
f b2 − eg

2(b2d2 − g2)
, (2.26)

where � < 0. Under the traction-free condition, the wave mode takes the form

u =
[
−gξ∗ − id2

d2ξ∗ + if

]
exp(ξ∗kz + ikx), c = 0. (2.27)

Interestingly, this displacement field results in null stress. In other words, the non-zero
evanescent wave displacement field generates a zero stress field. Therefore, this displacement
field for a unimode materials det(T) �= 0 represents a surface mode with zero velocity.

To illustrate the characteristics of Rayleigh wave in extremal materials, consider an example of
orthotropic extremal materials whose principle axis takes an angle θ to the coordinate axis.

The elasticity matrix is
C = Tθ C0Tθ

T, (2.28)

with

C0 =

⎡
⎢⎣C1111 C1122 0

C1122 C2222 0
0 0 C1212

⎤
⎥⎦ (2.29)

and

Tθ =

⎡
⎢⎣ cos2θ sin2θ − sin 2θ

sin2θ cos2θ sin 2θ

sin 2θ/2 − sin 2θ/2 cos 2θ

⎤
⎥⎦ . (2.30)

Since an extremal material with det(T) �= 0 must be a unimode material, there are only two
types of elasticity matrix C0 [56], namely

C0 =

⎡
⎢⎣ a2 αab 0

αab b2 0
0 0 0

⎤
⎥⎦ , |α| < 1 (2.31)

or

C0 =

⎡
⎢⎣a2 ab 0

ab b2 0
0 0 d2

⎤
⎥⎦ . (2.32)

If the elasticity matrix takes the form of equation (2.31), substituting equations (2.29)–(2.31)
into equation (2.25) yields

� = 1
4

a4b4(1 − α2)
2
sin22θ ≥ 0. (2.33)

According to equation (2.24), the wave does not decay. Hence, there is no evanescent wave or
Rayleigh mode for any angle θ .
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Figure 2. (a) The real part of the decay factor ξ and (b) the ellipticity ratio (H/V) for the surface particle polarization of a
unimode material, under the constraint of det(T) �= 0, versus Poisson’s ratio γ and rotation angle θ .

On the other hand, if the elasticity matrix takes the form of equation (2.32), we denote Poisson’s
ratio γ = a/b for stress in the x-direction of C0. Substituting equation (2.32) into equations (2.25)–
(2.27) and equations (2.29), (2.30), we find the following wave mode:

ξ∗ = ξ1 = ξ2 =
√−γ + i γ+1

2 sin 2θ

cos2θ − γ sin2θ
, γ < 0

u =
[

cos θ + i
√−γ sin θ

sin θ − i
√−γ cos θ

]
exp(ξ∗kz + ikx), c = 0. (2.34)

Again, this displacement field satisfies the traction-free condition, and therefore represents a
surface mode with zero phase velocity in orthotropic unimode materials for any γ < 0 and any θ .

For a surface particle, denote its displacement component along the surface as H, and that
perpendicular to the surface as V. The ellipticity [60]

H/V =
√

cos2θ − γ sin2θ

sin2θ − γ cos2θ
, (2.35)

represents the ratio between the surface particle’s displacement component (H) along the surface
and that perpendicular to the surface (V). For general parameters of θ and γ , figure 2a,b shows
the Rayleigh wave decay factor (Re(ξ∗)) and the ellipticity, respectively. For any given θ , the
Re(ξ∗) → 0 when γ → 0. While, when θ → 0, the real part of the decay factor Re(ξ∗) → √−γ , which
increases along with the decrease of γ . In figure 2b, the ellipticity (H/V) decreases as γ and θ

simultaneously increase or decrease. But when γ increases and θ decreases (or γ decreases and
θ increases), the ellipticity increases. This characteristic can be well explained by equation (2.35).
When θ → 0, the ellipticity H/V →√−1/γ indicating the ellipticity negatively correlated to the
magnitude of γ . While, when θ → π/2, the ellipticity H/V → √−γ , indicating the ellipticity
positively correlated to the magnitude of γ .

Note when γ = −1, i.e. for an isotropic unimode material, equation (2.34) is reduced to

ξ∗ = 1, u =
[

i
1

]
exp(ξ∗kz + ikx), c = 0. (2.36)

This represents a surface mode with zero phase velocity consistent with the results in our
previous work, which was verified numerically by twisted-kagome lattice [56].
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Figure 3. Scheme of Rayleigh surface waves propagating on the free surface of a semi-infinite elastic material in three
dimensions.

3. Three-dimensional general anisotropic extremal materials
The behaviour of Rayleigh waves in three-dimensional extremal materials differs significantly
from that in two dimensions. To complete our theory, it is essential to further investigate the
behaviour of Rayleigh waves in general three-dimensional extremal materials. In this section,
we discuss the Rayleigh waves in three dimensions. The schematic plot of Rayleigh waves
propagating on the free surface in three dimensions is shown in figure 3.

The fourth-order elasticity tensor for an elastic material with N zero eigenvalues is expressed
as

Cijkl =
6−N∑
r=1

KrS
(r)
ij S(r)

kl , (3.1)

with Kr being the non-zero eigenvalue of the elasticity tensor, and S(r) being a second-order
symmetric tensor (representing hard mode). For the sake of convenience, equation (3.1) can also
be written in a compact form as Cijkl =∑6−N

r=1 S(r)
ij S(r)

kl = S(r)
ij S(r)

kl , in which Kr is absorbed in S(r). Here,
the repeated upper index (r) means Einstein summation. The free surface z = 0 takes a normal
n = (0, 0, 1)T. We consider evanescent waves propagating along the + x-direction and decaying
exponentially along the − z-direction. As before, we define

Tik = Ci3k3 = S(r)
i3 S(r)

k3 , Rik = Ci1k3 = S(r)
i1 S(r)

k3 , Qik = Ci1k1 = S(r)
i1 S(r)

k1 , (3.2)

and additionally three 3 × (6 − N) matrices

Sj = Sr
ij =

⎡
⎢⎢⎣

S(r)
i1

S(r)
i2

S(r)
i3

⎤
⎥⎥⎦ , j = 1, 2, 3, (3.3)

which leads to
T = S3ST

3 , R = S1ST
3 , Q = S1ST

1 . (3.4)

Assume a displacement field

u =

⎡
⎢⎣U(kz)

V(kz)
W(kz)

⎤
⎥⎦ exp(ik(x − ct)) = A(kz) exp(ik(x − ct)), (3.5)

where A(kz) is a complex-valued vector function under the constraint

lim
z→−∞ A(kz) = lim

z→−∞ A′(kz) = 0. (3.6)
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Similar to the two-dimensional problem, the equation of motion can be written as

TA′′ + i(R+RT)A′ − QcA = 0. (3.7)

The same as in the previous section, A(kz) is abbreviated as A. The prime (
′
) represents the

derivative with respect to kz.
The traction-free condition in equation (2.8) at z = 0 still reads

TA′(0) + iRTA(0) = 0, (3.8)

and similar to equation (2.13),

Φ(A(kz)) = A′ · TA
′ − A · QcA = 0. (3.9)

So, we have Φ(0) = 0.
We define CFVs as

ti = S(i) · n, (3.10)

representing the projection of the hard mode S(i) on the free surface, or on the wavefront plane
(whose normal is n = (0, 0, 1)T, cf. [44]). In our previous work, we demonstrated that CFVs may
shed light on the characteristic of equi-frequency surface (i.e. the bulk wave properties of extremal
materials) along the n direction. They also play an important role in discussing the characteristics
of Rayleigh waves in extremal material. In the following, we shall use the conservative function Φ

in equation (3.9) to exclude propagating Rayleigh waves in trimode (N = 3), quadramode (N = 4)
and pentamode (N = 5) materials when

rank(S3) = rank([t1, . . . , t6−N]) = 6 − N. (3.11)

As a matter of fact, equation (3.8) can be rewritten as

S3ST
3 A′(0) + iS3ST

1 A(0) = 0, (3.12)

which leads to

ST
3 A′(0) + iST

1 A(0) = 0, (3.13)

for ker(S3) = {0}. Then substituting equation (3.13) into equation (3.9), we get the conclusion
similar to equation (2.16)

0 = Φ(A(0))

= A′(0) · TA
′
(0) − A(0) · QcA(0)

= A′(0) · S3ST
3 A

′
(0) − A(0) · QcA(0)

= A(0) · (S1ST
1 − Qc)A(0)

= A(0) · (Q − Qc)A(0)

= ρc2|A(0)|2

=
(

ρ

k2 u̇Hu̇
)∣∣∣∣

kz=0
. (3.14)

Similar to two-dimensional cases, three-dimensional extremal materials with rank(S3) = 6 − N
take kinetic energy vanishing at the surface.
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(a) Pentamode materials
According to the definition in equation (3.1), the elastic tensor of a general pentamode material is

Cijkl = S(1)
ij S(1)

kl , S(1) =

⎡
⎢⎢⎢⎣

S(1)
11 S(1)

12 S(1)
13

S(1)
12 S(1)

22 S(1)
23

S(1)
13 S(1)

23 S(1)
33

⎤
⎥⎥⎥⎦ , (3.15)

i.e. r = 1, N = 5. Similar to two-dimensional cases, combining the governing equations (3.7) and
traction-free condition equation (3.8), we classify two cases: rank(S3) �= 0 and rank(S3) = 0.

For the case rank(S3) �= 0, i.e. rank(S3) = rank(t1) = 1 = 6 − 5, equation (3.14) implies that the
kinetic energy vanishes at the surface. It requires u(0) = 0 or c = 0. For the dynamical system,
u(0) = 0 leads to u(z) = 0, corresponding to trivial equilibrium. Therefore, if a Rayleigh wave
exists, it must be with zero phase velocity. For any Re(ξ ) > 0, it can be expressed as:

u =

⎡
⎢⎣û1

v̂1
ŵ1

⎤
⎥⎦ exp(ξkz + ikx) = Â1 exp(ξkz + ikx), c = 0, (3.16)

where Â1satisfies

(S3ξ + iS1)Â1 = 0. (3.17)

Next, we consider the case rank(S3) = 0, i.e. S3 = 0. The traction-free condition is naturally
satisfied. Substituting S3 = 0 into equation (3.7) leads to

QcÂ1 = 0. (3.18)

If there exists a non-trivial solution of the displacement, the determinant of Qc must be zero, i.e.

(ρc2)2[ρc2 − (S2
11 + S2

12)] = 0. (3.19)

There are two possibilities, either c = 0 or ρc2 = S2
11 + S2

12. They yield two bulk wave modes

u1 =

⎡
⎢⎣−S12A1 exp(ξ1kz)

S11A1 exp(ξ1kz)
A2 exp(ξ2kz)

⎤
⎥⎦ exp(ikx), c = 0, (3.20)

u2 =

⎡
⎢⎣S11

S12
0

⎤
⎥⎦ exp(ξkz) exp(ik(x − ct)), ρc2 = S2

11 + S2
12, (3.21)

where A1 and A2 are arbitrary constants. The displacement field in equation (3.20) for any
Re(ξ ) > 0 represents a Rayleigh mode with zero phase velocity. That in equation (3.21) represents
a surface wave for any Re(ξ ) > 0 with phase velocity that is equal to the bulk wave speed, which
may be a kind of limiting bulk wave [61,62]. This is a rather special situation, as the elastic tensor
components are independent of the z coordinate giving rise to a three-dimensional monoclinic
extremal material symmetry with respect to the (x, y)-plane. However, this material behaves like
a two-dimensional material. This is similar to the case discussed in §2 where the two-dimensional
material behaves like a one-dimensional material. Since we mainly focus on the Rayleigh waves
whose phase velocity is smaller than those of bulk waves, we discard this case.

Therefore, there is no propagating Rayleigh wave in pentamode material.
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(b) Quadramode materials
A quadramode material only has two hard modes, i.e. r = 2, N = 4. Therefore, the general elasticity
tensor is

Cijkl = S(1)
ij S(1)

kl + S(2)
ij S(2)

kl , S(1) =

⎡
⎢⎢⎢⎣

S(1)
11 S(1)

12 S(1)
13

S(1)
12 S(1)

22 S(1)
23

S(1)
13 S(1)

23 S(1)
33

⎤
⎥⎥⎥⎦ , S(2) =

⎡
⎢⎢⎢⎣

S(2)
11 S(2)

12 S(2)
13

S(2)
12 S(2)

22 S(2)
23

S(2)
13 S(2)

23 S(2)
33

⎤
⎥⎥⎥⎦ . (3.22)

In this subsection, we demonstrate that the Rayleigh wave cannot propagate in quadramode
material if rank(S3) = rank[t1, t2] = 2 = 6 − 4. In terms of bulk wave properties, the outmost equi-
frequency surface of quadramode material is open in the n direction.

Under the elasticity tensor equation (3.22), there is no propagating Rayleigh wave in
quadramode materials when rank(S3) = 2. Moreover, the displacement field of a Rayleigh mode
for any Re(ξ ) > 0 can also be expressed by equations (3.16) and (3.17).

When rank(S3) < 2, the outmost equi-frequency surface of quadramode materials is open in
the n direction, resulting in wave property similar to that in a pentamode material. Then, the
function Φ cannot be organized to the elegant form of (3.14). After discussing case by case in a
similar way to appendix A, we may establish the same conclusion that the Rayleigh wave cannot
propagate in quadramode materials when rank(S3) < 2. Details are omitted.

As a result, there is no propagating Rayleigh wave in a quadramode material.

(c) Other extremal materials
For a trimode material, i.e. r = 3, N = 3, using the same method as illustrated in quadramode
materials, we can verify that no propagating Rayleigh wave exists when rank(S3) =
rank[t1, t2, t3] = 3 = 6 − 3. However, we find a special kind of trimode material that supports
propagating Rayleigh waves when rank(S3) < 3, i.e. t1, t2 and t3 are linearly dependent.

Consider a trimode material, which is stiff to any stress in the (x, z)-plane and its hard modes
are expressed by

S(1) = √
μ

⎡
⎢⎣1 0 0

0 0 0
0 0 −1

⎤
⎥⎦ , S(2) = √

μ

⎡
⎢⎣0 0 1

0 0 0
1 0 0

⎤
⎥⎦ and S(3) =

√
λ + μ

⎡
⎢⎣1 0 0

0 0 0
0 0 1

⎤
⎥⎦ . (3.23)

In equation (3.23), λ and μ are the Lamé constants. The CFVs are accordingly

t1 = −√
μ[0, 0, 1]T, t2 = √

μ[1, 0, 0]T and t3 =
√

λ + μ[0, 0, 1]T, (3.24)

with rank(S3) = 2 < 3. Such a trimode material is a three-dimensional orthotropic extremal
material, possessing symmetry with respect to the (x, z)-plane. So, in (x, z)-plane, its elasticity
matrix degenerates to a two-dimensional isotropic Cauchy material in Voigt or Kelvin notation

C =

⎡
⎢⎣λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

⎤
⎥⎦ . (3.25)

The well-known Rayleigh equation for the phase velocity of Rayleigh waves in isotropic
Cauchy materials can be expressed as [11]

(
2 − c2

c2
T

)2

− 4

(
1 − c2

c2
L

) 1
2
(

1 − c2

c2
T

) 1
2

= 0, (3.26)

where cT = √
μ/ρ and cL =√

(λ + 2μ)/ρ are transverse and longitudinal wave velocities,
respectively. Substituting equations (3.25) into (3.26), the Rayleigh wave phase velocity and
surface particles polarization may be obtained after some manipulations [11].
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Next, for bimode (r = 4, N = 2) and unimode (r = 5, N = 1) materials, i.e. as the number of
hard modes increases, it is even easier to construct a rank-sufficient elasticity matrix in the (x, z)-
plane. In other words, Rayleigh waves may exist in certain crystal faces of bimode and unimode
materials. For instance, in bimode and unimode materials, there always exist propagating
Rayleigh waves in the (x, z)-plane, if three of the hard modes are in the form of equation (3.23).

In conclusion, there is no propagating Rayleigh wave in any three-dimensional pentamode
and quadramode material. In addition, for trimode materials, Rayleigh waves exist only when
rank(S3) = rank[t1, t2, t3] < 3. In unimode and bimode materials, Rayleigh waves exist in certain
crystal faces where the two-dimensional degenerate elasticity matrix is rank-sufficient.

4. Application
In previous sections, we have demonstrated that there is no propagating Rayleigh wave in any
two-dimensional extremal materials. The Rayleigh wave excited on the left side of an ordinary
Cauchy material surface, as shown in figure 4c, is usually transmitted to the right side along the
x-axis, even when it encounters another interlayer of ordinary Cauchy material. A Rayleigh wave
may be blocked when it encounters an extremal material, since the extremal material does not
support propagation of the Rayleigh waves. Therefore, the extremal materials may be adopted
as a Rayleigh wave isolator. Compared with a hole dug to block the Rayleigh waves, extremal
materials may withstand certain loads. In this section, we propose a Rayleigh wave isolator
based on unimode material, and numerically demonstrate this for both homogenized and discrete
models.

Numerical simulations are conducted by using the Solid Mechanics and Truss Module of
commercial software package COMSOL Multiphysics 5.6 in the frequency domain with the
multifrontal massively parallel sparse direction solver. In the simulation, the surroundings
of the computed domain are covered by perfectly matched layers (PMLs) to eliminate wave
reflection. Figure 4c shows the FEA model based on the homogenized material model to
demonstrate the function of extremal material used as a Rayleigh wave isolator. The semi-infinite
homogeneous material is aluminium with Lamé constants λAl = 50.35 GPa, μAl = 25.94 GPa and
density ρAl = 2700 kg m−3. A point source is used to excite the right-propagating Rayleigh wave
on the free surface. The small rectangle on the middle right of the size length 20 × 100 mm is filled
with homogenized unimode material or ordinary Cauchy material, representing the interlayer
inserted into the background medium. The Rayleigh wave propagation is calculated for these
two cases separately to demonstrate the ability of the extremal material as a Rayleigh wave
isolator. The same calculations are performed to check the designed unimode lattice and ordinary
Cauchy lattice (as shown in figure 4a,b). The solid and lattice use uniform triangular meshes
and bar element with meshes defined along the edge, respectively. In this case, the homogenized
materials are respectively replaced by their corresponding lattice. The total size of the FEA model
is 1200 × 200 mm.

Now we introduce two lattices for simulations. Consider a periodic pin-joint cubic symmetry
truss model, with a unit cell sketched in figure 4a. All rods in the unit cell have the same length
l and cross-sectional area Aout. Any neighbouring unit cell may be reached by translating the
reference unit cell with a direct lattice translation vector xiai, with i ∈ {1, 2}, and xi Z. The Einstein
summation rule is adopted for repeated indices. For the unit cell shown in figure 4a, we have

a1 =
[√

2l, 0
]T

, a1 =
[
0,

√
2l
]T

. (4.1)

Then, the coordinates of the nodes are given by

n1 =
[
l/

√
2, 0

]T
, n2 =

[
0, l/

√
2
]T

, n3 = n1 + a2, n4 = n2 + a1. (4.2)
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Following the Cauchy–Born hypothesis-based homogenization method (see [52] for details),
this lattice can be homogenized as a unimode material with elasticity matrix

CUM = EbAout

2l

⎡
⎢⎣1 1 0

1 1 0
0 0 1

⎤
⎥⎦ , (4.3)

in which Eb is Young’s modulus of the rods. In addition, its effective mass density can be simply
calculated by the volume average

ρeff
UM = 2ρ1Aout

l
, (4.4)

where ρ1 is the mass density of rods in the unimode lattice.
Furthermore, by adding two red rods in the unit cell in figure 4a to construct a unit cell

as shown in figure 4b, an ordinary Cauchy lattice (nullmode lattice, N = 0) is obtained, with
homogenized elasticity matrix

CNM = EbAout

2l

⎡
⎢⎣1 + √

2Ā 1 0
1 1 + √

2Ā 0
0 0 1

⎤
⎥⎦ . (4.5)

Here, the normalized cross-sectional area is defined as Ā = Ain/Aout, with Ain the cross-sectional
area of the red rods. The effective mass density is

ρeff
NM = 2ρ2Aout

l

(
1 + Ā√

2

)
, (4.6)

where ρ2 is the mass density of rods in the nullmode lattice. For microstructure lattice,
the ideal material constants and geometric parameters are given unless otherwise explicitly
specified: Eb = 200 GPa, ρ1 = 2ρ2 = 1350 kg m−3, l = 2 mm, Aout = Ain/

√
2 = 2 × 10−3m2. Then, the

nullmode lattice is an isotropic Cauchy lattice, and the rectangular area is filled with 10 × 50 lattice
unit cells. The homogenized elasticity matrix and densities of the unimode material and ordinary
Cauchy materials are therefore

CUM =

⎡
⎢⎣1 1 0

1 1 0
0 0 1

⎤
⎥⎦× 100 GPa, ρeff

UM = ρAl, (4.7)

CNM =

⎡
⎢⎣3 1 0

1 3 0
0 0 1

⎤
⎥⎦× 100 GPa, ρeff

NM = ρAl. (4.8)

Substituting the material constants of aluminium into (3.26), and after some manipulations
[11], we obtain the Rayleigh wave phase velocity and surface particle polarization

c ≈ 2869.05 m s−1, û = [0.5384, − 0.8427i]T, at z = 0. (4.9)

Similarly, the Rayleigh wave in the isotropic material with elasticity matrix of equation (4.8)
takes the phase velocity and surface particle polarization as

c ≈ 5595.29 m s−1, û = [0.5630, − 0.8264i]T, at z = 0. (4.10)

Since the two isotropic materials support different Rayleigh waves, when the material with
equation (4.8) is inserted into the aluminium as an interlayer, to some extent, it will affect the
propagation of Rayleigh waves in aluminium.

Figure 5 shows the simulation results of wave propagation in frequency domain, where the
PMLs are not shown to illustrate more clearly the scattering fields. A right-propagating Rayleigh
wave with frequency f = 50 kHz and polarization equation (4.9) is excited from the left point
source on the aluminium surface. The coloured contours represent the total displacement field
normalized by the incident wave. Figure 5a1,b1 shows the simulation results for the interlayer
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Figure4. The sketch of unimode/Cauchy lattice and the finite-element analysismodel in COMSOL. (a) Unimode lattice. The unit
cell contains four nodes (n1 and n2 are independent nodes) and four rods. All of the rods in the unit cell have the same length l
and the cross-sectional areas Aout. The ai (i= 1, 2) is the direct translational basis. (b) Ordinary Cauchy lattice, same as (a) but
add two red rods to connect the diagonal nodes. The cross-sectional area of red rods is Ain. (c) The simulation model consists
of a piece of homogenized material of size 20× 100 mm. The semi-infinite material is set to be aluminium and surrounded by
PMLs on all boundaries except the top boundary (free surface). A point source is located at the middle left to excite Rayleigh
waves. The middle right of the inserted interlayer may be the homogenized effective-medium or microstructure lattice.

employing the homogenized ordinary Cauchy material and homogenized unimode material,
respectively. After the Rayleigh wave transmits through the piece of ordinary Cauchy material
with equation (4.8), its amplitude decreases a little to the incident wave. However, when the
ordinary Cauchy material is replaced by the unimode material with equation (4.7), it is clear that
the Rayleigh wave is blocked to a large extent. This demonstrates the ability of extremal materials
as a Rayleigh wave isolator, in agreement with the conclusion of no propagating Rayleigh wave
supported in two-dimensional extremal materials for the continuum. Figure 5a2,b2 is the same
calculations as figure 5a1,b1, but the homogenized materials are, respectively, replaced by their
corresponding lattices. Consistency holds between the simulations and our conclusion for non-
existence of Rayleigh waves in two-dimensional extremal materials. Furthermore, we compare
the scattering fields between the homogenized model and the microstructure calculation (see
the zoomed plot for clarity), i.e. figure 5a1,a2 as well as figure 5b1,b2. Again, we obtain a good
agreement between the microstructure model and the effective-medium calculations. This, in
fact, also confirms our designed microstructure for both the unimode material and the ordinary
Cauchy material.

5. Summary
The exotic properties of Rayleigh wave in extremal materials, including its phase velocity and
polarization of surface particles, have been examined in detail. To solve Rayleigh waves in
extremal materials, we constructed a weak form with special test function. It is found that
for most two-dimensional extremal materials, the kinetic energy of surface particles is always
required to be zero, therefore these extremal materials do not support propagating Rayleigh
waves. While, for other extremal two-dimensional materials, we proved case by case that neither
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Figure 5. The normalized total displacement fields for illustrating the ability of extremal materials used as Rayleigh wave
isolator. (a1) and (b1) are simulation results when the interlayer employing homogenized ordinary Cauchy material (with
equation (4.8) and homogenized unimode material (with equation (4.7)), respectively. (a2) and (b2) are the same as (a1) and
(b1) but the effective-media are replaced by ordinary Cauchy lattice and unimode lattice. Zoomed-in view plots the detail of the
displacement field around the interlayer.

do they support such waves. In addition, during the proof in the three-dimensional case, it is also
found that CFVs play an important role for Rayleigh wave properties in extremal materials. In
short, Rayleigh waves do not propagate in any two-dimensional extremal elastic material. In three
dimensions, pentamode and quadramode materials cannot support propagating Rayleigh wave.
In contrast, we find a class of trimode materials satisfying rank(S3) < 3 that support propagating
the Rayleigh wave on a certain crystal face. However, when a trimode material satisfies
rank(S3) = 3, they do not support propagating Rayleigh wave in any crystal face. For bimode and
unimode materials, Rayleigh waves may exist on certain crystal faces. Finally, a Rayleigh wave
isolator is proposed and demonstrated. In two dimensions, it consists of unimode material, and
numerical simulations are performed for both homogenized and corresponding discrete models.
In summary, we provide a systematic study on Rayleigh waves in extremal materials in both
two and three dimensions, paving the way for exploring the exotic wave properties of Rayleigh
waves.
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Appendix A
We first prove that there is no propagating Rayleigh wave in two-dimensional extremal materials
when its elasticity matrix satisfies the constraint of det(T) = 0. The possible Rayleigh modes in this
case are also calculated. Finally, an example of orthotropic extremal materials whose principle axis
is θ to the coordinate axis is given to illustrate our findings.

Substituting equation (2.21) into equation (2.20) and discard the trivial case Â1 = 0, we get

(gρc2 − a2g + fe)ξ + i(d2ρc2 − a2d2 + f 2) = 0,

(d2ξ + if )ρc2 = 0. (A 1)

Then, we have the following two circumstances: c2 = 0 or c2 �= 0. We discuss the two cases
separately.

The first circumstance c2 = 0 indicates that the Rayleigh wave phase velocity is zero, i.e. there is
no propagating Rayleigh waves. Considering Re(ξ ) greater than 0, the relation of the coefficients
can be simplified as

det(T) = det(R) = det(Q) = 0. (A 2)

Here, equation (A 2) comes from equation (A 1). Then, in this case, the reduced elasticity matrix
and Rayleigh mode for Re(ξ ) > 0 is

C =

⎡
⎢⎣a2 ab ad

ab b2 bd
ad bd d2

⎤
⎥⎦ , u =

[
bξ + id

−dξ − ia

]
exp(ξkz + ikx), c = 0. (A 3)

For c2 �= 0, according to equation (A 1), we get d2ξ + if = 0. Since Re(ξ ) > 0, we have d = f = 0.
Then, substituting d = f = 0 into the first equation in equation (2.21) leads to

gv̂1ξ = 0. (A 4)

Therefore, we need either v̂1 = 0 or v̂1 �= 0 for the traction-free condition.
For the first subcase, i.e. v̂1 = 0. Combining with the second equation in equation (2.21), we

have gξ + ie = 0, then g = e = 0. After substituting d = e = f = g = 0 into equation (2.20), we get
ρc2 = a2. So, in this case, the elasticity matrix is reduced as

C0 = diag(a2, b2, 0), (A 5)

and the Rayleigh mode for any Re(ξ ) > 0 is

u =
[

û1
0

]
exp(ξkz + ik(x − ct)), ρc2 = a2. (A 6)

This is a rather special situation as the wave properties are similar to those of a material whose
elastic tensor only has a non-zero component C1111 = a2. It can be verified that the displacement
field in equation (A 6) results in zero stress in the extremal materials. Since the wave properties
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along the x-direction of extremal materials with elastic tensor of equation (A 5) behave like one-
dimensional materials [44], the component C2222 are no use in this problem. Therefore, we discard
this case, as we did in our previous work [56].

For the second subcase, i.e. v̂1 �= 0. Then, according to equation (A 4), we have g = 0. After
substituting d = f = g = 0 into equations (2.20) and (2.21), we get

(ρc2 − a2)û1 = −ieξ v̂1,

(ρc2 − d2 + b2ξ2)v̂1 = −ieξ û1,

b2ξ v̂1 = −ieû1. (A 7)

From equation (A 7), we can solve c = 0 which contradicts with c2 �= 0.
In conclusion, there is no propagating Rayleigh wave exist in two-dimensional extremal

materials when its elasticity matrix satisfies the constraint of det(T) = 0. In the following, two
examples of orthotropic bimode extremal materials whose principle axis rotated by θ with respect
to the coordinate axis are given to demonstrate our findings.

There are only two types of elasticity matrix C0 for orthotropic bimode extremal materials with
det(T) = 0 [56]

C0 =

⎡
⎢⎣a2 ab 0

ab b2 0
0 0 0

⎤
⎥⎦ , (A 8)

C0 = diag(0, 0, d2). (A 9)

Then, the elasticity matrix C for the rotated orthotropic extremal material can be calculated by
C0 combining equations (2.28) and (2.30).

We first consider the elasticity matrix of equation (A 8), which is basically an example of
equation (A 3). Upon inserting equation (A 8) into equations (2.28) and (2.30), then into (A 3),
we get the following wave modes for Re(ξ ) > 0

u =
[

(a sin2θ + b cos2θ)ξ + i(a − b) sin θ cos θ

−(a − b)ξ sin θ cos θ − i(a cos2θ + b sin2θ )

]
exp(ξkz + ikx), c = 0. (A 10)

The displacement field in equation (A 10) can be verified that it naturally satisfies the traction-
free condition and therefore represents a Rayleigh mode in orthotropic bimode materials but with
zero phase velocity for any θ .

Next, we consider the elasticity matrix of equation (A 9), which is also basically an example of
equation (A 3). Similarly, we get

u =
[

ξ sin 2θ + i cos 2θ

−ξ cos 2θ + i sin 2θ

]
exp(ξkz + ikx), c = 0, (A 11)

which can be verified that it naturally satisfies the traction-free condition and therefore represents
a Rayleigh mode but with zero phase velocity for any θ .

Note that, when θ = 0, i.e. a bimode material whose principal axis is parallel to the free surface,
equations (A 10) and (A 11) will be, respectively, reduced as

u =
[

bξ
−ia

]
exp(ξkz) exp(ik(x − ct)), c = 0, Re{ξ} > 0, (A 12)

u =
[

i
−ξ

]
exp(ξkz) exp(ik(x − ct)), c = 0, Re{ξ} > 0. (A 13)

This is consistent with the results in our previous work [56].
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