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Abstract
This study investigates the dynamics of a piezoelectric quasi-zero stiffness metastructure
controlled by linear and nonlinear shunts. An equivalent lumped-mass model of the
metastructure with shunts is developed. The absolute displacement transmissibility of the
metastructure is calculated analytically and numerically, with results from both methods
showing strong agreement. Optimized shunt parameters are determined based on the linear
transfer function of the system under base excitation, and the effects of linear and nonlinear
shunts on the transmissibility are thoroughly analyzed. At a relatively high excitation level, the
interaction between the resonant shunts and the metastructure splits the transmissibility curve
into two branches, significantly reducing the peaks of the primary branch. When the excitation
amplitude exceeds a threshold, severe detuning occurs, causing the separated branches to merge,
which diminishes the control effectiveness of the shunts. Nonlinear shunts exhibit a higher
critical detuning excitation amplitude compared to linear ones, as their resonance frequencies
expand with increasing excitation amplitude. The metastructure’s resonance frequency increases
at a faster rate than that of the nonlinear shunt, eventually causing the shunt to detune. By
appropriately reducing the inductance to raise the shunt’s resonance frequency, the branches of
the transmissibility curve can be effectively separated again, thereby reducing the amplitudes of
the main branch.

Keywords: metastructure, piezoelectric shunt, quasi-zero stiffness, nonlinearity,
vibration isolation

1. Introduction

Vibration transmissibility issues can greatly compromise the
functionality and reliability of equipment, especially when
dealing with low-frequency disturbances that are notoriously

∗
Author to whom any correspondence should be addressed.

difficult to manage. A practical approach to minimize these
issues is to use isolators that serve as ‘barriers’ between the
source of vibration and the affected system. The perform-
ance of such isolators heavily depends on their ability to com-
bine high static stiffness, which is necessary for load-bearing,
with low dynamic stiffness, which is crucial for isolation effi-
ciency at lower frequencies. One potential solution is a quasi-
zero stiffness (QZS) isolator. These isolators are specifically
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designed to have a zero stiffness at the equilibrium position
and nonlinear stiffness characteristic elsewhere, which allows
them to effectively handle complex dynamic requirements
while providing the necessary support and maintaining the
isolation performance.

A widely recognized strategy for designing QZS isolat-
ors is to combine positive stiffness and negative stiffness
components [1]. Positive stiffness elements are responsible for
providing strong load-bearing support, while negative stiff-
ness elements counterbalance this stiffness to achieve a QZS
effect. This configuration enables isolators to operate at the
frequencies much lower than those of standard linear systems.
Several designs for QZS isolators have been proposed, and
they differ mutually with respect to the way how the negative
stiffness elements are realized. A commonly adopted method
employs oblique springs to producemechanismswith negative
stiffness [2–9]. Additionally, the buckling properties of beams
and plates have been extensively utilized as a basis for creating
QZS isolators [10–12]. Other innovative techniques include
the use of cams and rotors to introduce negative stiffness [13,
14], and the application of nonlinear magnetic forces, which
can serve to create positive or negative stiffness [15, 16] or
directly achieve the QZS effect [17].

Curved beams have recently been employed as fundamental
components for developing a novel class of structured isolat-
ors, referred to as QZS metastructures. Unlike conventional
QZS isolators, these metastructures can be incorporated into
existing structures, thereby considerably minimizing the addi-
tional mass typically introduced by separate isolators in prac-
tical applications. Cai et al [18], Fan et al [19], and Dalela
et al [20] utilized curved beams to achieve negative stiffness
and paired semi-circular beams to achieve positive stiffness
for constructing QZS metastructures. Additionally, a single
cosine-shaped curved beam can be used to directly create QZS
unit cells, enabling the design of lightweight and compact
metastructures [21, 22].

However, whether in conventional QZS isolators or newly
introduced metastructures, significant vibration peaks remain
evident near the resonant frequencies. While employing
materials with high damping can help mitigate these peaks,
it may also compromise vibration isolation efficiency in the
working frequency ranges, ultimately reducing the overall per-
formance of the isolators. On the other hand, when the excit-
ation amplitude is high, the peak of the transmissibility curve
shifts significantly to the right due to the effects of harden-
ing nonlinearity, potentially leading to jumping phenomena.
To overcome these issues, in recent years, a dynamic vibra-
tion absorber (DVA) [23–27] or a nonlinear energy sink (NES)
[28–30] is introduced into a QZS isolator. The DVA or NES
can absorb part of the vibration energy of the isolator, there-
fore, considerably reducing amplitude of the nonlinear reson-
ant peak, even linearizing the behavior of the isolator near the
resonance in some cases. The resonance frequency of a QZS
isolator or a metastructure usually is very low, which means
to reduce such a low-frequency peak, a large mass in the DVA
or NES is needed. As a result, a DVA or a NES is difficult to

be integrated with a QZS metastructure due to a very limited
space [22].

Recently, we have proposed to introduce piezoelectric
materials with linear resonant shunts into a QZSmetastructure
to mitigate a resonant peak [31]. The linear resonant shunts
generate narrow-band large damping to reduce the resonant
peak of the metastructure and have nearly no influence on the
isolation performance within the working frequency band. In
this previous work, we assumed that the excitation amplitude
is low and that the metastructure behaves as a linear system.
In the current work, we extend the analyzes to investigate the
influences of the shunts on the vibration transmissibility when
nonlinearity is strong. To do so, we consider both linear and
nonlinear resonant shunts. A linear resonant shunt connec-
ted to a piezoelectric patch usually is composed of induct-
ors and resistors [32]. By combing a nonlinear capacitor or
a nonlinear inductor into the linear resonant shunt, one can
obtain a nonlinear resonant shunt [33–35]. In practice, a non-
linear resonant shunt can be realized using synthetic inductors
[36], voltage source [37] or operational amplifiers [38]. In
recent years, digital circuits with delicately designed control
algorithms have been proposed to obtain synthetic impedances
[39, 40]. They can be used to obtain linear resonance at very
low frequencies [41–46]. Also, nonlinear resonant shunts have
been realized using digital circuits [47–50]. Digital circuits
can achieve very large inductance, which is typically limited
to millihenries when using analog components.

In this work, we mainly focus on the interaction between
the nonlinear QZS metastructure and nonlinear shunts when
excitation level increases and explain the underlying phys-
ics. To present the methodologies and findings of this work,
this manuscript, besides the Introduction, contains four addi-
tional sections. Section 2 introduces the physical model of the
proposed piezoelectric QZS (Piezo-QZS) metastructure with
shunts. Section 3 presents a mathematical model to analyze the
nonlinear dynamics of the metastructure with linear and non-
linear shunts, providing also a method to optimize the shunts
when the system is excited by the base motion. In section 4,
we compare the control effects of linear and nonlinear shunts
on the absolute displacement transmissibility of the metastruc-
ture. Finally, section 5 summarizes the key findings of this
study.

2. Physical model of a piezoelectric QZS
metastructure with shunts

Figure 1(a) shows an example of the proposed nonlinear Piezo-
QZS metastructure. The basic functional unit cell of the meta-
structure is shown in figure 1(b). The unit cell is composed of
a cosinusoidal beam supported by thick frames. On the sur-
faces of the curved beam, piezoelectric micro-fiber composite
(MFC) patches are attached, each of the patch is connected to a
shunt, the components of which will be specified in section 3.
The shape of the curved beam in its fabricated state is:

w̄= h/2 [1− cos(2π x/ l)] (1)

2
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Figure 1. (a) A 3D Piezo-QZS metastructure; (b) a Piezo-QZS unit
cell with shunts; (c) geometry of the piezo-curved beam.

in which, l is the span, h is the initial apex height, as illustrated
in figure 1(c). We also define b as the width of the beam and
tb as the thickness.

For a MFC patch, the span, width and thickness of it are
lp, b and tp, respectively. The patches cover the surfaces from
0.23l to 0.77l on the curved beam with a gap of 0.02l in the
middle. Such geometry configurations of the MFC patches are
optimized according to the shape of the first linear resonant
mode of the curved beam in our previous work [31]. In this
work we deal with the first nonlinear resonant mode. Our focus
is on the influence of the shunt on the resonant peak, even
though we have not adjusted the geometry and location of the
patches according to the nonlinear resonant mode but adopted
the design in the linear case in [31], the results in section 4
demonstrate that the MFC patches with optimized linear and
nonlinear shunts can effectively reduce the amplitudes of res-
onances.

3. Theoretical model for dynamic analysis

In this section, we propose a theoretical model to study the
dynamics of the Pizeo-QZSmetastructure with linear and non-
linear shunts. First of all, a nonlinear relationship between the
force applied at the center of the curved beam (see figure 1(c))

and the displacement of the central point is derived under
open-circuited condition. Based on this relationship, a single
degree of freedom (DOF) lumped model with linear and non-
linear stiffness is obtained as a representation of the curved
beam, and another equation to describe the coupled shunts is
also established.

3.1. Nonlinear force-displacement relationship of a
piezo-curved beam

We assume that a force f is applied at the center of the beam, as
illustrated in figure 1(c). The vertical displacement at the cen-
ter of the beam is d. To find the relationship between f and d,
we need to obtain the expression of the deformed shape of the
beam, which isw(x). In theory, the deflection of a curved beam
can be approximated by superimposing the buckling modes of
a clamped straight beam [51]. Given that the force is applied
at the center, the curved beam’s deformation will exhibit sym-
metry. It has also been shown that the first mode contributes
the most significantly compared to higher-order terms [31].
Therefore, for simplicity, higher-order terms are disregarded.
Consequently, the deformed shape of the curved beam can be
approximated as:

w(x) = A1

[
1− cos

(
2π

x
l

)]
(2)

where A1 is an unknown coefficient.
Now we can calculate the potential energy associated with

the deformation of the beam. At this stage, the patches are
assumed to be open-circuited. The total bending energy of the
curved beam is:

ub = 2

Db

2

0.23lˆ

0

(
∂2w
∂x2

− ∂2w
∂x2

)2

dx+
Doc

eff

2

0.49lˆ

0.23l

(
∂2w
∂x2

− ∂2w
∂x2

)2

dx

+
Db

2

0.5lˆ

0.49l

(
∂2w
∂x2

− ∂2w
∂x2

)2

dx


=

(DbC11 +Doc
eff
C21 +DbC31)

l3

(
h2

4
−A1h+A2

1

)
(3)

where Db = EbIb and Eb is the Young’s modulus of the host
beam and Ib = bt3b/12; Deff is the equivalent bending stiffness
of the part of the curved beam covered by the MFC patches
when the patches are open-circuited, and the expression for
which is given by:

Doc
eff
=
bEoc

p

[
(tb + 2tp)

3 − t3b

]
+Ebbt3b

12
(4)

with Eoc
p = Esc

p /1− k231 being the Young’s modulus of the
patch under open-circuited condition, Esc

p is the Young’s
modulus of the patch under short-circuited condition, k31 =

d31
√
Esc
p /ε33 is the electromechanical coupling coefficient of
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the material. The other constants in equation (3) are C11 =
1.9983π 4, C21 = 1.8419π 4 and C31 = 0.1598π 4.

In addition to bending, the curved beam is also subjected
to horizontal compression from the lateral force due to the
horizontal constraint boundaries. To calculate the compression
energy, we assume that the deformation of the MFC matches
the deformation of the base beam to which it is attached, and
that the two pairs of piezoelectric patches undergo identical
deformation due to their symmetric configuration. After sev-
eral steps, the compression energy of the entire piezo-curved
beam is expressed as:

us =
b
8l3
(
15.38Eoc

p tpD
2
11 +EbtbD

2
21

)(
−h2

4
+A2

1

)2

(5)

with D11 = 0.5795π 2,D21 = 2π 2.
The work done by the external force will also contribute to

the potential energy of the deflected beam, and it is calculated
as follows:

uf =−f · d=−f ·
[
w̄

(
l
2

)
−w

(
l
2

)]
=−f · (h− 2A1) .

(6)

The total potential energy of the piezo-curved beam under
applied force is:

utot = ub + us + uf. (7)

By applying the principle of a minimal potential energy, the
following force-displacement relationship is derived:

f =
b

32l3
(
15.38Eoc

p tpD
2
11 +EbtbD

2
21

)(
d3 − 3hd2 + 2h2d

)
+

(
DbC11 +Doc

eff
C21 +DbC31

)
2l3

d. (8)

From equation (8), we can also determine the conditions
that the material and geometric parameters of the piezo-curved
beam must satisfy to achieve the QZS characteristic. For sim-
plicity, we introduce the following dimensionless parameters:

F=
fl3

EbIh
,∆=

d
h
,P=

tp
tb
,Q=

h
tb
,S=

Eoc
p

Eb
.

Using the above dimensionless parameters, equation (8) is
rewritten as:

F=
3
8
AQ2∆

(
∆− 3

2
+

√
1
4
− 4B

3AQ2

)

×

(
∆− 3

2
−

√
1
4
− 4B

3AQ2

)
(9)

where A= 15.38SPD2
11 +D2

21,B= C11 +C21 +C31 +
SC21

(
8P3 + 12P2 + 6P

)
.

By differentiating equation (9) with respect to ∆, one can
obtain the nonlinear stiffness:

K=
9Q2A
8

∆2 − 9Q2A
4

∆+
3Q2A
4

+
B
2
. (10)

The QZS characteristic is achieved when the beam’s min-
imal stiffness approaches zero. This minimal stiffness occurs
at the static equilibrium position where ∆= 1, and it can be
represented as:

Kmin =
B
2
− 3

8
AQ2. (11)

Letting Kmin ≈ 0, the condition that parameters P, Q, and S
must satisfy to achieve the QZS property is derived as follows:

4B− 3AQ2 ≈ 0. (12)

The accuracy of equation (12) has been well verified in our
previous work [31].

3.2. Governing equations

To analyze the dynamic responses of the Piezo-QZS meta-
structure, we assume that the applied load causes the curved
beam to be compressed to the horizontal position (figure 2(a)).
Since the focus is on the dynamic responses near the first res-
onance frequency, a simplified single DOF model is typic-
ally used to represent the loaded metastructure in this context
[20, 22]. The single DOF model is illustrated in figure 2(b).
It contains a mass M, a nonlinear spring knl and a dashpot
c. The motion of the base is zb (t) and that of the mass is
zt (t). The relative displacement between the base and top mass
is z(t) = zt(t)− zb(t). When the MFC patches are all open-
circuited, the stiffness of the nonlinear spring can be derived
by substituting d= h+ z into equation (8), which is:

f = koc1 z+ koc3 z
3 +

DbC11 +Doc
eff
C21 +DbC31

2l3
h (13)

where
koc1 =

DbC11 +Doc
eff
C21 +DbC31

2l3
−

b
32l3

(
15.38Eocp tpD

2
11 +EbtbD2

21

)
h2

koc3 =
b

32l3
(
15.38Eocp tpD

2
11 +EbtbD2

21

)
(14)

To reduce the first resonant peak, a shunt is connected to
each MFC patch. Habib et al [52, 53] pointed out that the
best vibration mitigation effects can be achieved if a nonlinear
absorber governed by a similar equation to the primary sys-
tem is used. In other words, the order of nonlinearity of the
dynamic absorber should be equal to that of the host system.
Returning to this work, as can be seen in equation (13), the
nonlinearity of the curved beam is cubic. Therefore, a nonlin-
ear capacitance Cnl with cubic nonlinearity is used. The shunt
also contains a linear inductor L and a linear resistor R in series
to the nonlinear capacitance. The curved beam and the shunt

4
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Figure 2. An equivalent theoretical model of the metastructure with nonlinear shunt. (a) The curved beam is compressed to its equilibrium
position, (b) the nonlinear shunt composes a linear inductor L, a linear resistor R and a nonlinear capacitor Cnl.

is coupled through the MFC patch, and we use θ to repres-
ent the electromechanical coupling term in the single DOF
model. Therefore, the governing equation for the relative dis-
placement of the mass is:

Mz̈+ cż+ koc1 z+ koc3 z
3 − θq=−Mz̈b (15)

here, q is the charge in the shunt, the governing equation for
which is:

Lq̈+Rq̇+
1
Cnl

q3 = Vp (16)

with Vp being the voltage of the patch. This voltage is induced
by the mechanical deformation in accordance with:

Vp = θz− 1
Cs

p
q (17)

where Cs
p =

(
1− k231

)
Apε33/tp is the intrinsic capacitance of

the patch, Ap is the area of the top surface of the patch.
Combining equations (16) and (17), we derive:

Lq̈+Rq̇+
1
Cs

p
q+

1
Cnl

q3 − θz= 0. (18)

Obviously, it can be seen that equation (18) has the exact
form as equation (15).

Based on equations (15) and (18), it is clear that the dis-
placement of the top mass depends not only on the mech-
anical properties of the curved beam but also on the val-
ues of the components in the shunt. However, before using
equations (15) and (18) to analyze the dynamic responses,
we must first derive the expression for the electromechanical
coupling term θ, which is provided below.

We consider that all the patches are short-circuited, which
means Vp = 0. According to equations (15) and (17), we have:

Mz̈+ cż+ koc1 z+ koc3 z
3 − θq= 0

0= θz− 1
Csp
q

(19)

Eliminating the variable q in the first equation of
equation (19):

Mz̈+ cż+
(
koc1 − θ2Csp

)
z+ koc3 z

3 = 0. (20)

Therefore,

θ2 =
koc1 − ksc1
Cs

p
(21)

where ksc1 is the linear stiffness of the equivalent nonlinear
spring when all the MFC patches are short-circuited. It can
be obtained by replacing Eoc

p and Doc
eff

with Esc
p and Dsc

eff
in

equation (14).
By substituting the expressions of koc1 and ksc1 into

equation (21), we have:

θ2 =

bC21

[
(tb + 2tp)

3 − t3b

]
24l3

−
bh2hpD2

11

2.08l3

 ·
Eoc
p −Esc

p

Cs
p

.

(22)

Until now, all the parameters in equations (15) and (18)
are identified, with the exception of those belonging to the
shunt, which will be optimized using a method proposed in
section 3.4.

3.3. Transmissibility

We assume that the base moves harmonically zb = Zb cos(ωt).
The frequency response of the top mass can be calculated by
solving equations (15) and (18). Given the fact that the system
contains the cubic (Duffing) stiffness nonlinearity and that it is
base excited, the analytical response cannot be found analytic-
ally in the exact form [54] and one needs to utilize the approx-
imate approach. For the sake of that, it is assumed herein that
the response is predominantly such that it contains the first har-
monic only, while the higher ones are neglected. Such assump-
tion is verified numerically for each of the cases studied.

The relative displacement between the mass and base and
the charge in the shunt is assumed as:

z= Zcos(ωt+φ 1)

q= Qcos(ωt+φ 2)
(23)

here, φ 1 and φ 2 are the phase differences between the excita-
tion and responses.

Substituting equation (23) into equations (15)
and (18), the governing equations can be rewritten into:

5
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

[
−Mω2Zcos(ωt+φ 1)− cωZsin(ωt+φ 1)

+koc1 Zcos(ωt+φ 1)+ koc3 Z
3cos3 (ωt+φ 1)− θQcos(ωt+φ 2)

]
=Mω2Zb cosωt−Lω

2Qcos(ωt+φ 2)−RωQsin(ωt+φ 2)

+
1
Csp
Qcos(ωt+φ 2)+

1
Cnl

Q3cos3 (ωt+φ 2)− θZcos(ωt+φ 1)

= 0

(24)

By setting the terms related to the first har-
monic on both sides of the above equations equal,

and omitting the terms related to higher harmon-
ics, i.e. applying the first-order harmonic balance
method (HBM), we obtain the following equations:



−Mω2Z+ koc1 Z+
3
4
koc3 Z

3 − θQcos(φ 2 −φ 1)−Mω2Zb cosφ 1 = 0

−cωZ+ θQsin(φ 2 −φ 1)−Mω2Zb sinφ 1 = 0

−Lω2Q+
1
Csp
Q+

3
4

1
Cnl

Q3 − θZcos(φ 2 −φ 1) = 0

RωQ+ θZsin(φ 2 −φ 1) = 0

(25)

By eliminating the variables φ 1 and φ 2, we obtain:



(
−LQω2 +

Q
Csp

+
3
4
Q3

Cnl

)2

+R2Q2ω2 − θ2Z2 = 0

ω2

(
cZ+

RQ2

Z

)2

+

[
−MZω2 + koc1 Z+

3
4
koc3 Z

3 − Q
Z

(
−LQω2 +

Q
Csp

+
3
4
Q3

Cnl

)]2
−M2ω4Z2

b = 0

(26)

When the amplitude Zb and frequency ω of the base excit-
ation are given, by solving the equations in equation (26), we
can obtain the amplitude Z of the relative displacement of the
mass and the amplitudeQ of the charge. The absolute displace-
ment transmissibility from the base to the mass then can be
calculated through:

T= 20log

∣∣∣∣ z+ zb
zb

∣∣∣∣= 20log

√
Z2 +Z2

b + 2ZZb cosφ 1

Zb
(27)

in which,

cosφ 1 =
−MZω2 + koc1 Z+

3
4k

oc
3 Z

3 − Q2

Z

(
−Lω2 + 1

Cs
p
+ 3

4
1
Cnl
Q2

)
MZbω2 .

To verify these approximate analytical results, we also
solve the exact governing equations (15) and (18) in time

domain numerically by using the fourth-order Runge-Kutta
Method (RKM). The excitation is also taken as zb =
Zb cos(ωt) and the frequency of it is swept over a certain fre-
quency range.We obtain the time-domain response of themass
and calculate the transmissibility based on:

T= 20log

∣∣∣∣RMS(zt)
RMS(zb)

∣∣∣∣ (28)

where RMS stands for the root mean square operation on a
signal.

3.4. Optimization of the shunt

To minimize the resonant peak around the system’s first res-
onance, it is necessary to optimize the values of L, R and Cnl

in the shunt. Several methods for this optimization have been

6
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proposed in previous investigations, including approaches out-
lined in [35, 36]. However, in those works, the studied systems
are excited by forces, while in this work, the system is base
excitated. This difference makes the transfer function of the
corresponding linear system different. As a result, the optim-
ized values of L and R in previous works cannot be directly
used here since they are calculated using the transfer function.
Therefore, we need to determine the optimal parameters spe-
cifically suited for our system.

For the values of L and R, they usually are optimized by
ignoring the nonlinear terms in both the mechanical and elec-
trical parts (namely, koc3 = 0,Cnl =∞) [35]. For such a linear
system, we can use the so-called two equal peaks method to
find the optimal values [55]. For the corresponding linear sys-
tem of equations (15) and (18), under the harmonic excitation
of the base, the transfer function of the linear system is:

H(ω) =
Z+Zb

Zb

=
koc1
(
−Lω2 + iωR+ 1/Cs

p

)
− θ2

(−Mω2 + koc1 )
(
−Lω2 + iωR+ 1/Cs

p

)
− θ2

. (29)

Note that the mechanical damping is ignored in the above
expression, and this approximation is valid if the damping is
small [55].

The key idea of the two equal peaks method is to find the
values of L and R to make the two peaks of the transfer func-
tion in equation (29) equal. Such values are determined in three
steps. First, we use the following equation to calculate the two
frequencies at where the transfer function has values independ-
ent of R:

|H(ω)|R=0 = |H(ω)|R=∞. (30)

The left term in the equation is the absolute value of the
transfer function when R= 0, and the right one is the absolute
value of the transfer function when the MFC patch is open-
circuited. By solving equation (30), we can obtain two fre-
quencies, ω1 and ω2, and they depend on L.

Then, the optimal value of L can be obtained through:

|H(ω1)|R=0 = |H(ω2)|R=0. (31)

Lastly, for the optimal value of R, the following conditions
must be satisfied:

∂ |H(ω)|
∂ω

|ω=ω1 = 0,
∂ |H(ω)|

∂ω
|ω=ω2 = 0. (32)

Usually, from the first and second equations in
equation (32), two different R will be obtained, namely,
R1 and R2, and we can choose the optimal value of R to be
(R1 +R2)/2.

It should be pointed out that the explicit expressions
for the optimized values of L and R can be derived using
equations (30)–(32), but they will be very cumbersome and
not needed as such. In this work, we calculate the optimal L
and R by numerically solving equations (30)–(32).

Figure 3. Comparison of the effects of linear shunts with
parameters optimized by using different methods.

To verify the effects of the optimized L and R, we use
the parameters in table 2 (see section 4) and ignore the non-
linear terms in both the mechanical and electrical parts. We
compare the transmissibility curves between the case with
optimized linear shunt (obtained using equations (30)–(32))
and the case under the open-circuited condition in figure 3.
Clearly it is observed that the values of L and R derived from
equations (30)–(32) can achieve two equal resonant peaks,
which means that the optimized control effect is obtained. We
have also calculated the transmissibility curves when values
of L and R are obtained using the expressions in [47, 55]. It is
clearly confirmed that those formulas cannot be directly used
in our case with the excitation stemming from the motion of
the base as it is apparent that the amplitude of two peaks are
not equal.

For the nonlinear capacitance, it can be determined accord-
ing to the principle of similarity [36, 52, 53]. Adopting this
rule to our system, the nonlinear stiffness ratio between the

shunt and metastructure is approximately 2
(
L
M

)2
. The optim-

ized value of the nonlinear capacitance therefore is:

Cnl =
M2

2L2koc3
. (33)

Substituting the optimal values calculated via
equations (30)–(33) into equations (15) and (18) and solv-
ing the equations using the methods in section 3.3, we can
obtain the transmissibility of the metastructure with shunts.

4. Results and discussion

To study the control effects of the shunts, here, we use a meta-
structure with one piezo-curved beam as an example. The
geometry and material parameters of the curved beam are
designed using equation (12), and they are detailed in table 1.
The QZS characteristic of the designed beam was confirmed
in [31] both numerically and experimentally.

Using the parameters in table 1, we can calculate the para-
meters of the theoretical model proposed in section 3, and the
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Table 1. Geometric and material parameters of the piezo-curved beam.

Base beam MFC [56]

E= 70 GPa Esc
p = 32.58 GPa

tb = 1.7 mm d31 =−267× 10−12 C/N
h= 2.1 mm ε33 = 2344.4ε0
l= 100 mm tp = 0.3 mm
b= 14 mm \

Table 2. Parameters of the theoretical model.

M (Kg) c (Nsm−1) ksc1 (Nm−1) koc1 (Nm−1) koc3 (Nm−3) Cs
p (nF) θ (N/C)

21.2 7 3.95× 103 5.87× 103 2.27× 1010 89.4 1.47× 105

corresponding results are given in table 2. Note that, the mass
is chosen to be 21.2 kg to make the curved beam work within
the QZS region. The damping coefficient of the beam is chosen
to be c = 7, which results in a small modal damping ratio of
approximately 1%, i.e. ξ = c

2M
√
koc1 /M

≈ 0.01.

We would like to emphasize that, in order to accurately use
the equivalent model proposed in section 3, the following con-
ditions or assumptions must be met:

• The maximum absolute displacement of the curved beam
should be less than a critical value. Under this condition,
we can only use the first static mode to obtain the analyt-
ical expression of the nonlinear stiffness of the curved beam.
For the designed metastructure in table 1, this value is about
4 mm, as illustrated in figure 3 of our previous work [31].

• The second resonance frequency of the compressed meta-
structure should be significantly higher than the maximum
frequency under study. This allows us to model the complex
structure using the first resonant mode and obtain a simpli-
fied single DOF model.

• The nonlinear responses are dominated by the primary
harmonic.

In figure 4, the transmissibility curves under different excita-
tion amplitudes are studied when the MFC patches are open-
circuited.When the excitation amplitude is small (for example,
Zb = 1× 10−6 m), the system behaves like a linear one. If the
excitation amplitude exceeds 1× 10−5 m, the branches and
the resonance peaks of the transmission curves noticeably lean
to the right, which is feature of systems with hardening stiff-
ness nonlinearity. We also calculate the transmissibility using
the RKM when Zb = 8× 10−5 m. During the numerical sim-
ulations, the frequency is swept both forward and backward,
the stable results in the previous step are used as initial values
in the next step. Apparently, the approximate analytical results
from the HBM and numerical results from RKM match very
well with each other, which demonstrates the accuracy of our
methods, and provides verifications of the approximation used
by assuming the response as having one harmonic dominantly,
as described by equation (23).

Figure 4. Transmissibility of the metastructure under the
open-circuited condition corresponding to different excitation
amplitudes. Lines represent results from HBM.

4.1. Comparison between linear and nonlinear shunts

First, we study the effects of linear shunts with optimal values
on the resonant peak of the transmissibility curve.We compare
the transmissibility curves between the cases with and without
shunts, while also considering varying levels of the amplitude
of base excitation. The results are illustrated in figure 5, both
results from HBM and RKM are shown. At lower excitation
level (figures 5(a)–(c)), it is evident that a significant outcome
of the interaction between the resonant shunt and the beam is
the splitting of the transmissibility curve into two branches,
namely, a main branch and a detached branch (Note that, to
find the solutions on the detached curves using RKM, the solu-
tions of HBM are used as initial values). Such phenomenon
has also been reported in other nonlinear systems with internal
couplings, the detached curve is also called isola [57–62].
The peaks of the primary resonance curves are significantly
reduced by the linear shunt. On the other hand, the shunt has
minimal to no effect on the resonances corresponding to the

8
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Figure 5. Effects of linear shunt with optimal values on the resonant peaks, L =3.38× 104 H, R =4.29× 105Ω. (a) Zb = 2× 10−5 m, (b)
Zb = 4× 10−5 m, (c) Zb = 6× 10−5 m, (d) Zb = 8× 10−5 m.

detached curves in terms of reducing amplitudes. When the
excitation amplitude exceeds a certain value (Zb ⩾ 8× 10−5 m
for the system studied), the effectiveness of the linear shunt
significantly diminishes, as shown in figure 5(d). The detached
resonance curve is againmergedwith the primary (continuous)
one.

To further analyze the influences of the excitation level, in
figure 6, we compare the transmissibility curves under control
for cases with different excitation amplitudes. When the excit-
ation is relatively low (figure 6(a)) but the nonlinearity cannot
be ignored, the nonlinear resonant peak is perfectly mitigated
by the linear shunt. When the excitation amplitude exceeds
1.4× 10−5 m, an isola is observed (figure 6(b)). As the excit-
ation amplitude increases, the right peak of the main branch
grows, and the isola extends downward to the left. As a res-
ult, the two branches merge when the excitation amplitude is
greater or equal to Zb = 8× 10−5 m, and the transmissibility
near the right peak is dramatically increased. These phenom-
ena are caused by the detuning between the linear shunt and
the nonlinear mechanical part, because as the excitation amp-
litude increases, the resonance frequency of the metastructure
increases but that of the linear shunt stays unchanged.

Next, we study the effects of the nonlinear shunt with
optimal values on the resonant peak. The transmissibility
curves for the nonlinear cases are shown in figure 7. Like in the
linear cases, when the excitation amplitude remains relatively
small (figures 7(a)–(c)), the transmissibility curve is divided
into two distinctive branches, and the responses of the primary
branches are significantly reduced by the nonlinear shunt.
When the excitation amplitude reaches Zb = 10× 10−5 m, the
two branches merge.

We also compare the transmissibility curves with nonlin-
ear shunt at different excitation levels, and the correspond-
ing results are shown in figure 8. The details reveal a sim-
ilar phenomenon observed as in the linear case: when the
excitation amplitude exceeds 1.4× 10−5 m, an isola becomes
apparent; as the excitation further increases, the response amp-
litudes near the second peak of the main branch increases,
and the detached curve becomes lower, and finally they merge
with each other. This phenomenon indicates that the nonlinear
shunt will also gradually become increasingly detuned with
themechanical resonator as the excitation amplitude increases.
Such detuning between the nonlinear shunt and the mechan-
ical component has not been reported in previous studies [35,

9
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Figure 6. Comparison of the transmissibility curves for different excitation amplitudes when the piezo-curved beam is shunted with
optimized linear shunt, L =3.38× 104 H, R = 4.29× 105Ω. (a) Zb = 1× 10−5 m, (b) Zb = 1.4× 10−5 m, (c) Zb = 4× 10−5 m, (d)
Zb = 7.8× 10−5 m, (e) Zb = 8× 10−5 m, (f) Zb = 12× 10−5 m.

36, 47], it will also make the shunt ineffective if the excitation
amplitude exceeds the threshold, as illustrated in figures 8(e)
and (f).

According to the results in figures 5–8, one may raise
a question: what are the differences between the linear and
nonlinear shunting cases? To answer this question, figure 9
compares the control effects of the linear and nonlinear shunts
at the same excitation level. When the excitation amplitude is
small (before the birth of the isola), the control effects of the
linear and nonlinear shunts are exactly the same (figure 9(a)).
As the excitation amplitude increases but remains below the
critical value associated with detuning, the nonlinear shunt

demonstrates better performance compared to the linear shunt.
Specifically, the maximum resonant peak of the primary
response curve is lower in the nonlinear case, and the gap
between the two branches is more pronounced (figures 9(b)
and (c)). However, before the linear shunt experiences signi-
ficant detuning, the advantage of the nonlinear shunt remains
relatively inconspicuous in terms of the above-mentioned con-
trol effects.

The greatest advantage of a nonlinear shunt compared with
the linear counterpart is its higher critical detuning excitation
amplitude. In the system studied, for the linear shunt, it will
be totally detuned when Zb ≥ 8× 10−5 m (figure 9(d)), but the
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Figure 7. Effects of nonlinear shunt with optimal values on the resonant peaks, L = 3.38× 104 H, R = 4.29× 105Ω,
Cnl = 8.68× 10−18 C3/V. (a) Zb = 4× 10−5 m, (b) Zb = 6× 10−5 m, (c) Zb = 8× 10−5 m, (d) Zb = 10× 10−5 m.

nonlinear shunt is tuned until the excitation amplitude reaches
Zb = 10× 10−5 m (figure 9(e)). The critical detuning excita-
tion amplitude of the nonlinear shunt is 25% higher than that
of the linear shunt. In both cases, when the shunts are signi-
ficantly detuned, they will again have almost the same control
effects on the transmissibility (figure 9(f)).

To explain why the nonlinear shunt has higher critical
detuning excitation amplitude and why it will finally become
detuned, we further analyze the dynamic responses of the
shunt. From figure 9, we can see that as the excitation amp-
litude increases from 6× 10−5 m to 10× 10−5 m, the shunt
transitions from being tuned to fully detuned. Figure 10(a)
shows the voltage responses of the nonlinear shunt during this
process. The linear resonance frequency of the metastructure

under open-circuited condition is
√

M
Koc

1
= 2.6 Hz. Therefore,

we mainly interested in the voltage level at frequencies from
2 Hz to 3 Hz. From figure 10(a), it can be seen that the voltage
amplitude is between 10 V to 40 V. Next, we disconnect the
nonlinear shunt from the piezo-patch and study its dynamic
responses excited by a harmonic voltage source Vincos(ωt),
the results are illustrated in figure 10(b). It can be observed
that as the excitation level increases, the resonance frequency
of the nonlinear shunt increases, while that of the linear shunt
remains constant. This is why the nonlinear shunt exhibits a
higher critical detuning excitation amplitude. However, since

the nonlinearity of themetastructure is stronger than that of the
nonlinear shunt with optimized parameters, the rate at which
the shunt’s resonance frequency increases is slower than that
of the metastructure. As a result, the nonlinear shunt eventu-
ally becomes detuned once the excitation surpasses a certain
threshold.

4.2. A strategy for retuning shunts under conditions of large
excitation amplitudes

In this section, we propose a strategy to deal with the detuned
phenomenon discussed above. As analyzed above, the detun-
ing between the shunt and metastructure is due to the res-
onance frequency of the metastructure increasing at a faster
rate than that of the shunt. Therefore, in the event of detun-
ing, retuning maybe accomplished by modifying the circuit’s
resonance frequency through adjustments to the inductance
value.

For a shunt, when it is connected to a piezoelectric patch,
the linear resonant frequency of the shunt is approxim-
ately 1/

√
LCp

s . Therefore, when detuning occurs, we need
to decrease the value of L to increase the resonance fre-
quency of the shunt. A universal retuning criterion is that the
retuned parameters should make the two peaks of the main
branch equal again. Note that, when the value of L is changed,
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Figure 8. Comparison of the transmissibility curves for different excitation amplitudes when the piezo-curved beam is shunted with
optimized nonlinear shunt, L = 3.38× 104 H, R = 4.29× 105Ω, Cnl = 8.68× 10−18 C3/V. (a) Zb = 1× 10−5 m, (b) Zb = 1.4× 10−5 m,
(c) Zb = 6× 10−5 m, (d) Zb = 9.8× 10−5 m, (e) Zb = 10× 10−5 m, (f) Zb = 12× 10−5 m.

the values of R and Cnl also need to be re-calculated using
equations (32) and (33).

Figure 11 illustrates the effects of the retuned nonlinear
and linear shunts on the transmissibility curves when Zb =
10× 10−5 m. From both figures 11(a) and (b) we can see that,
as the inductance decreases, a branch is detached from the
main curve, and the right peak of the main branch becomes
lower, the detached branch rises upward to the right. The
optimal retuned L can be chosen as the one that makes the
two peaks of the main branch equal. No doubt that this value

depends on the excitation level. As shown in figure 11, when
Zb = 10× 10−5 m, a new L that is around 0.9Lopt times of the
original one will achieve good control effects on the primary
branch in the nonlinear case (figure 11(a)). For the linear case,
the retuned L is approximately 0.8Lopt (figure 11(b)).

Figure 12 compares the transmissibility curves in the non-
linear and linear cases with the retuned optimal parameters for
Zb = 10× 10−5 m. It can be concluded that, with proper retun-
ing, both linear and nonlinear shunts exhibit similar control
performance on the nonlinear piezo-curved beam.
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Figure 9. Comparison of the control effects of the linear and nonlinear shunts with optimal values. (a) Zb = 1× 10−5 m, (b)
Zb = 4× 10−5 m, (c) Zb = 6× 10−5 m, (d) Zb = 8× 10−5 m, (e) Zb = 10× 10−5 m, (f) Zb = 12× 10−5 m.

5. Conclusion

In this work, the dynamic behavior of Piezo-QZS metastruc-
tures composed of piezo-curved beams controlled by linear
and nonlinear shunts has been studied. An equivalent dis-
crete model for the metastructure with shunts has been pro-
posed to analyze the dynamic behavior. The absolute displace-
ment transmissibility has been calculated both analytically and
numerically, and the results obtained by using these two meth-
ods match very well with each other, verifying the hypothesis
in the analytical approach about the dominance of the first har-
monic in the system response. The optimized parameters of the
shunts have been obtained by utilizing the linear transfer func-
tion of the system under base excitation. Using these optimized

values, the effects of linear and nonlinear shunts on the trans-
missibility have been analyzed under different excitation amp-
litudes. The main findings are:

(1) The interaction between the resonant shunts and the meta-
structure divides the transmissibility curve into two dis-
tinct areas, with the shunts significantly reducing the
peaks of the primary branch. As the excitation amplitude
increases, both the linear and nonlinear shunts become
detuned from the structure. Once the excitation surpasses
a certain threshold, the two separate branches of the trans-
missibility curve converge into a single branch again.
At this point, the control effectiveness of the shunts
deteriorates substantially. The nonlinear shunt becomes
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Figure 10. Voltage responses of the nonlinear shunt. (a) The shunt is connected to the metastructure excited by its base’s movement, (b) the
shunt is disconnected from the metastructure and is excited by a harmonic voltage source Vincos(ωt). L = 3.38× 104 H, R =4.29× 105Ω,
Cnl = 8.68× 10−18 C3/V are used in all the simulations.

Figure 11. Influences of retuned shunt parameters on the transmissibility curve, Lopt = 3.38× 104 H, R and Cnl in the retuned shunt are
calculated using equations (32) and (33), Zb = 10× 10−5 m. (a) Nonlinear shunt, (b) linear shunt.

Figure 12. Comparison between the control effects of linear and nonlinear shunts with retuned parameters, Lopt = 3.38× 104 H, R and Cnl

in the retuned shunt are calculated using equations (32) and (33), Zb = 10× 10−5 m.
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detuned because the increasing rate of the metastructure’s
resonance frequency is faster than shunt’s as the excitation
level raises.

(2) A strategy has been proposed to deal with the detuning.
The fundamental approach involves appropriately redu-
cing the inductance value and recalculating the other para-
meters within the shunts. From a physical perspective,
the retuning process increases the shunt’s resonance fre-
quency to ‘catch up’ with the metastructure’s, effectively
re-separates the two branches of the transmissibility curve,
which merged due to the increased excitation level.

(3) When the shunts are properly tuned to the mechanical
component, both linear and nonlinear shunts show sim-
ilar effectiveness in reducing transmissibility. However,
the nonlinear shunt offers a distinct advantage by sup-
porting a higher critical detuning excitation amplitude
than the linear shunt, thus providing a wider operational
range. This difference arises because, as the excitation
level increases, the resonance frequency of the nonlinear
shunt increases, whereas the resonance frequency of the
linear shunt remains unchanged.

While this work primarily focuses on enhancing the vibra-
tion isolation performance of QZS metastructures, we believe
the findings reached can also offer valuable insights into vibra-
tion suppression in other nonlinear systems through piezo-
electric shunting techniques, which extends our findings to a
higher level of applicability.
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