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Abstract This study deals with a longitudinally
excited chain of external linear oscillators, enhanced
with internal linear oscillators. The undamped case is
considered first as a benchmark, and then a viscously
damped chain is examined. Qualitatively different
vibration attenuation regions are identified, including
the cases of no attenuation region, a finite and semi-
infinite attenuation region, which represents a new
result for this type of chain of interest for vibration
control. The influence of the number of unit cells, the
mass and the damping ratio on their appearance is
examined thoroughly and illustrated in the form of
novel and original 2D and 3D behavioural maps,
which can be used as a design criterion for metastruc-
tures, but also for other systems modelled as this type
of chains. The nonlinear boundary between the finite
and semi-infinite vibration region involving the non-
dimensional damping coefficient and the number of
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units is determined for the first time. Besides, the
nonlinear change of the critical non-dimensional
damping ratio, which assures the appearance of the
semi-infinite vibration attenuation region in the sys-
tem response, with the non-dimensional total mass, is
also innovatively obtained. The theoretical identifica-
tion of three distinct regions of vibration attenuation is
experimentally validated through an original damping
control method utilizing an air track and an air pump
with a variable power output capability.
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1 Introduction

Chains are widely known as representing a sequence
of items of the same type forming a line, a set of
connected or related things, or as something that
confines, restrains or secures [1]. Chains appear in
nature, everyday life as well as in science and
engineering. In nature, one can recognize, chains of
mountains and islands, or food chains. In everyday
life, there are chains of events, supply chains, chains of
stores, etc. [2]. There is also a chain of action and
reaction, and one of the most powerful examples of the
latter is nuclear fission. In structural engineering,
chains are used either for lifting and securing, or for
transferring power in machines. Besides this, the chain
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is a unit of length equal to 66 feet [3], used in both the
US customary and Imperial unit systems; it is the ba-
sic unit for measuring distances in fire-control work.

Oscillatory chains appear as a distinctive model of
various biological, physical, or engineering systems
[4, 5]. There have been two types of co-axial
oscillatory chains that can be considered as prominent
and pivotal during the previous century or so for the
developments in science and engineering, especially
related to mechanics and solid-state physics. Chrono-
logically speaking, the first one is related to the name
and work of den Hartog [6] and the second one to the
names of Fermi, Pasta and Ulam [7].

Den Hartog’s work involves the chain in which the
main (host) oscillatory structure is enhanced with the
auxiliary oscillator, playing the role of the vibration
absorber (tuned mass damper) that is tuned to the
structural and excitation resonance frequency so that it
reduces the resonance response of the host structure
[6]. This theoretical foundation has resulted in the
advancements in plethora of optimizing approaches of
various vibration suppression devices [8—11], which
are widely used nowadays in structural, automotive
and aerospace engineering. Some of the respective
examples include the world’s tallest skyscrapers (e.g.
Taipei 101 tower in Taipei City and Burj al-
Arab in Dubai), cars produced by the world’s most
famous automobile manufacturers (e.g. Renault F1
car, Citroén 2CV, BMW 320D) as well as space
vehicles (e.g. NASA’s crew launch vehicle called
Ares).

On the other hand, Fermi, Pasta and Ulam’s
oscillatory chain [7] stems from the original idea of
Fermi to simulate the one-dimensional analogue of
atoms in a crystal as a long chain of particles linked by
springs with weak nonlinear correction either quad-
ratic or cubic one to its linear stiffness characteristic.
This system behaved in a surprising way: contrary to
the predictions of statistical mechanics when the
number of particles is going to infinity, the energy
equipartition state was not reached, and energy was
periodically returning to the initially excited mode.
This highly remarkable result, known as the FPU
paradox, shows that nonlinearity is not enough to
guarantee the equipartition of energy, which marked
the beginning of nonlinear physics, the theories
of solitons and chaos, and also the age of computer
simulations of scientific problems.
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The idea about the use of chain of oscillators has
also recently been brought to bear in metamaterials
and metastructures for controlling their low-frequency
vibrations [12, 13], with the horizons being opened by
the Science paper [14]. Given the fact that our work
addresses their utilization for passive longitudinal
vibration control, the overview of the state-of-the-art
is given related to the findings about attenuation zones
(bandgaps) within which the zero or low transmissi-
bility is achieved. In [15], a slender beam with
periodically attached oscillators was studied. The
maximum of attenuation was observed at the resonant
frequency of the oscillators as inversely proportional
to the mass ratio of the mass of the oscillator and the
mass of the beam per period and proportional to the
stiffness ratio of the oscillator and the equivalent
stiffness of the beam per period. It was demonstrated
in [16] that a metamaterial containing multiple
microstructures with a spectrum of local resonance
frequencies enables the system to have a significantly
reduced magnitude of the waves generated by the
dynamic source. In [17], the same mechanical model
was studied, showing that the effective mass density is
frequency-dependent and may become negative near
the resonance frequency of the internal mass. In [18], a
uniform rod with periodically attached multi-degree-
of-freedom spring—mass oscillators were examined.
The bandgap formation mechanisms are explained,
and expression derived for the band edge frequencies.
In [19], the case of periodically attached multi-degree-
of-freedom local oscillators was investigated. Exper-
iments showed that low damping vibration responses
exist before the bandgap and high damping vibration
responses appear after the bandgap. The study [20]
demonstrated that a working principle of metamate-
rial-based elastic wave absorber corresponds to the
concept of conventional den Hartog vibration absor-
bers [6]. This concept was extended to design a
broadband absorber that works well for elastic waves
of any wavelengths, including those shorter than the
unit cell’s length. In [21], the metamaterial whose
stopband commences at 0 Hz is presented. The
dominant effect of mass and stiffness of discrete units
on the transmissibility is found to be dominant with
respect to the effect of damping on the stopband was
found to be relatively small when compared with the
effects of mass and stiffness. In [22], the concept of
integrated internal oscillators in a longitudinally
excited metastructure extended presented and then
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analysed in detail in [23]. The latter study compared a
metastructure with vibration absorbers to a structure of
equal mass with no absorbers. Numerical simulations
showed that the distributed absorbers should be
designed such that their natural frequencies span a
range of frequencies. This concept was further
considered in [24], where a minimal number of
absorbers is obtained, yielding the proper tuning
between the metastructure and internal oscillators
and resulting in the desirable vibration attenuation
around the first resonance.

The current study aims to contribute to the funda-
mental knowledge and demonstrate its original appli-
cations by linking two previously described prominent
models of den Hartog [6] and Fermi, Pasta and Ulam
[7] in an original way to determine its benefits for
vibration suppression in metamaterials and metastruc-
tures modelled as chains of oscillators. The links with
den Hartog’s work will be established in a way that the
same type of tuning will be defined: internal oscillators
will have the natural frequency adjusted to the natural
frequency of the external (main) oscillators. The links
with Fermi, Pasta and Ulam’s work assumes the
investigations of the influence of the increasing
number of oscillatory units to the response of the
chain. In addition, this study also contains the original
contribution of the influence of damping, revealing
qualitatively different outcomes in terms of a finite and
semi-infinite vibration attenuation region, which are
seen to be opening horizons for practical applications,
not only for metastructures, but also for systems from
other fields modelled as the same type of chains of
oscillators.

2 Chain of mass-in-mass units: den Hartog’s
tuning

A mechanical model considered corresponds to a
chain of repetitive mass-in-mass units (Fig. 1). The
external (host, main) masses m that stand for the basic
structure are attached mutually via linear springs of
stiffness k. The internal oscillators are uniform, i.e.
they are all equal: each has the mass m; and it is
attached to the external mass via linear spring of
stiffness k;. The structure is exposed to the base
excitation ZycosQt and it exhibits longitudinal vibra-
tions. The generalized coordinates for the ith unit are

labelled, respectively, by the absolute coordinates x;
and y;, where i = 1, ..., n.

2.1 Undamped model

The undamped case is considered for the sake of
subsequent comparison with the damped case. The
equations of motion for the ith unit can be written
down as

mx; 4+ k(2x; — xi-1 — Xiy1) — ki (yi —x;) =0

1
myyy + ki (yi — x;) = 0. M

The natural frequencies of each external and

internal oscillator are respectively given by wy =

Vk/m and @, = \/k;/my. Besides these substitu-

tions, the following non-dimensional parameters are
introduced: the non-dimensional frequency as the ratio
of the excitation frequency and the natural frequency
of the external oscillator y = Q/wy; the non-dimen-
sional stiffness as the ratio of the stiffness coefficient
of the internal and external oscillator k = k; /k; the
non-dimensional mass as the ratio of the mass of the
internal and external oscillator p = m; /m.

Given the fact that the system considered is linear,
the solutions for motion can be taken in the form
proportional to the excitation [25]. Then, the set of
resulting equations of motion is solved analytically in
Wolfram Mathematica for each fixed value of n with a
view to determining the amplitude of the last main
mass A,, i.e. the top of the metastructure, as labelled in
Fig. 1. Note that for the first unit, one needs to include
the base excitation into the corresponding equation of
motion.

The way how the nondimensional amplitude A, /Z,
changes with the nondimensional frequency , is
shown in Fig. 2. The stopband is also indicated. This
region appears between the left and right resonance
values Y, and g, which are placed here at the
corresponding vertical asymptotes.

Of further interest is to determine how the width of
this stopband Aw changes with the number of units n
for the reduction of A, being 60 dB. These results are
obtained numerically. Given the fact that the model is
conservative, this high reduction assures that the
amplitude will be as close to zero as possible. The
nondimensional mass ratio is assumed to be u =1
(note that this value will be changed later on), while
the nondimensional stiffness ratio is also taken to be
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Fig. 1 Mechanical model under consideration with mass-in-mass units
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Fig. 2 Frequency-response function for the top mass in the
undamped chain with the stopband labelled

x =1 for the whole study as well as that the
nondimensional mass ratio takes the same value. It
should also be noted that this case corresponds to the
classical den Hartog’s tuning, m;/m =k;/k=1,
which implies that the natural frequencies of the
internal and external oscillators are tuned to each other
o = w;. The change of Aw with n ranging from 0 to
100 is presented in Fig. 3. The enlargement of this
figure for a smaller number of internal masses until 10
is given on the right part of Fig. 3. It can be concluded
that for a smaller number of these masses, the width of
the stopband is very small. As this number increases,
until appr. 10, the width increases more rapidly, and
then after app. 30 of them, its change becomes
negligible, i.e., the saturation phenomenon appears.
This implies that adding more units will not widen the
attenuation region.

The way how the width of the stopband Aw changes
with the number of units » for various mass ratios y is
plotted in Fig. 4a. It is seen that as u decreases from
unity, this width narrows down as well. However, this
change is qualitatively the same as the one shown in
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Fig. 3, meaning that as the number of units gets larger,
the phenomenon of saturation appears and there is no
further widening of the stopband.

The relocations of the vertical asymptotes 1y, and
W with the number of units » for various mass ratios y
is presented in Fig. 4b. As this ratio becomes smaller,
both ; and \, approach the value yy = 1, consider-
ably narrowing down the width of the stopband.

2.2 Damped model

To take into account the influence of damping, linear
viscous dampers are introduced into the mechanical
model of a metastructure as shown in Fig. 5 they are
set in parallel with the springs that connect units
mutually as well in parallel with the springs that
connect each internal mass with the external one. The
damping coefficient of the former is labelled by b, and
the latter by b,.

The equations of motion for the ith unit can now be
extended to

mx; + b(2X; — Xi_y — Xip1) + k(2x; — ximy — Xiq1)
—b1(y; — %) —ki(yi —x;) =0
my; + by (y; — %) + ki (yi — x;) = 0.

(2)

As in the previous section, the non-dimensional
frequency ¥, the non-dimensional stiffness x, and the
non-dimensional mass p are introduced. In addition,
the non-dimensional damping coefficient is defined as
p = by /b, while the non-dimensional damping ratio is
taken as { = b/(2may).

The system of equations of motion is again solved
analytically in Wolfram Mathematica for each fixed
value of n to obtain A,. Since A, involves rational
functions with polynomials of degree 8n, certain
algebraic manipulations are required to make this term
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Fig. 3 Change of the width of the stopband with the number of units n; The enlarged part of the graph on the righthand side is shown for
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Fig. 4 a Change of the width of the stopband Aw with the number of units n for various mass ratios |; b Relocation of the vertical
asymptotes ¥/, and y, with the number of units »n for various mass ratios u

Fig. 5 Mechanical model of under consideration with mass-in-mass units

suitable for further use in numerical algorithms. Given
the calculation requirement, all calculations for
n > 40 are done with High Performance Computing,
during which a server AMD EPYC 7282 processor
with 16 cores, 32 threads, and 128GB RAM was used.
The reduction of the amplitude of the top mass A,, with
respect to the excitation amplitude is set to correspond

to 20 dB. Typical and qualitatively different illustra-
tive forms of its frequency-response function are
presented in Fig. 6. The one presented in Fig. 6a is
when such reduction is not achieved along the
frequency region considered, i.e. up to ¢y = 2. The
next one shown in Fig. 6b is similar to the one from
Fig. 2 with respect to the existence of a bandgap
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Fig. 6 Qualitatively different frequency-response functions
for the top mass in the damped metastructure obtained for
w=p=0.1, { =0.04 and the desired vibration attenuation of

bounded on both sides, i.e. it is limited by ¥y and Wx.
In the case presented in Fig. 6¢, the attenuation
appears in a frequency region bounded on the left-
hand side only by W1 , which means that it is of a semi-
infinite width. This is similar to a vibration isolation
region that appears in a linear one-degree of freedom
externally excited system [26]. The first case will be
referred subsequently as the NoAR (no attenuation
region), the second case as FinAR (finite attenuation
region), and the third one as SemiFinAR (semi-infinite
attenuation region), and as far as the authors are aware,
this distinction and characterization appears for the
first time in the context of vibration control of the
chains under consideration.

To examine the influence of the number of units
n on the appearance of FinAR and SemiFinAR, it is
again assumed that y = p = k = 1. Figure 7 shows
the width of the attenuation region changes when the
non-dimensional damping ratio is taken first to be
{ = 0.01 (magenta dots). The curve for the undamped
system from Fig. 3a is also plotted (blue dots) to
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u “u’ﬁ\ Semi-finite attenuation region
05} \ (SemiFinAR)

0.0 0s v, 10 5 20 ¥

20 dB: a NoAR case (the graph is obtained for n = 3); b FinAR
case (the graph is obtained for n = 10); ¢ SemiFinAR case (the
graph is obtained for n = 28)

emphasize the qualitative and quantitative changes. It
is seen that the width is finite only until a certain
number of the masses (app. 40 of them), and then the
case of the semi-infinite one occurs as the magenta
curve does not appear anymore. So, unlike the
undamped case when the width becomes constant
after app. 10 masses, in the damped case, the width
monotonously increases until a considerably larger
number of units and then it turns into SemiFinAR. As
also shown in Fig. 7, if { takes larger values, the
SemiFinAR case appears for a smaller number of
units.

The enlargement of these curves for both the
undamped and damped case is shown in the right part
of Fig. 7. It is seen that for a smaller number of units
(until app. 10 of them), the undamped and lightly
damped system behave almost the same in this respect
as the width of FinAR is equal or almost equal to the
undamped case (the magenta and blue dots coincide or
are very close to each other).

The way how the width of the attenuation region
Aw changes with the number of units n for various
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Fig. 7 Change of the width of the attenuation region with the
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solid line is the repetition of the results from Fig. 3); The
enlarged part of the graph on the righthand side is shown for a
smaller number of units n
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Fig. 8 Change of the width of the stopband Aw with the number of units n for various mass ratios p; b Relocation of the left and right
boundaries )/, and ¥, with the number of units n for various mass ratios p

mass ratios p is plotted in Fig. 8a. It is seen that as u
decreases from unity, this width narrows down, as was
the case in the undamped system as well. However,
unlike therein, when p is very small, it does not exist
for a smaller number of units. In addition, as u
increases, the SemiFinAR case appears for a smaller
number of units.

The relocations of the boundaries of the FinAR with
the number of units 7 is presented in Fig. 8b. The left
boundary always exists, and its value decreases with
the increase of n, while the right one moves towards
higher frequency and then disappears, meaning that
the SemiFinAR takes place.

It is of interest now to carry out behavioural
mapping, i.e. determine when, depending on the
combination of the system parameter, each of three
qualitatively different responses from Fig. 6 will take
place. Such behavioural maps in 2D are given in Fig. 9

for various values of ;= p = k. When these values
are small as shown in Fig. 9a for u = p = 0.1, the
dominant is the case of FinAR, while SemiFinAR
appears for after a certain number of units (app. 20),
and then this region widens for larger damping. The
case of NoAR exists only for a very small number of
units and widens for larger damping. As the value of
1 = p increases, this region disappears, while the case
of SemiFinAR extends, as seen in Fig. 9b, c. These
diagrams can be used for the design of the metastruc-
ture, defining the combination of the number of units
and damping for a given u = p that will yield the
SemiFinAR response, and, thus, beneficial vibration
performance in a wider frequency region.

What is pointed out in Fig. 9 by the black solid line
is the boundary between the SemiFinAR and FinAR
region. Numerical investigations have shown that this
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Fig. 9 Behavioural
mapping plotted in 2D for

various values of ;1 = p: a

uw=p=0.1;b
u=p=06cu=p=1

(Cases 1-6 are discussed in
Sect. 3.3 and are associated
with the diagrams presented

in Figs. 18 and 19)
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boundary can be approximately expressed by the
equation:

{=—", (3)

implying that the non-dimensional damping coeffi-
cient and the number of units are inversely propor-
tional with the coefficient K(u) that depends on the
mass ratio g, which is a new result. The way how this
coefficient changes with p is presented in Fig. 10. It is
seen that the larger the mass ratio, the smaller the
coefficient K. It is interesting to note that for the light
subunits corresponding to p = 0.1, one has
K(0.1) = 1.

In Fig. 11, behavioural mapping is shown for
several values of the number of units. As n increases,
there is a larger number of combinations of the non-
dimensional mass ratio p and the non-dimensional
damping ratio { yielding the SemiFinAR response. So,
for lighter metastructures, the higher the number of
units, the smaller damping is needed to achieve it.

To get deeper insight into the change of distribution
of the characteristic regions, the behavioural mapping
is created in 3D as dependent on the number of units n,
the non-dimensional damping ratio {, and the non-
dimensional mass ratio u being equal to the non-
dimensional damping coefficient p. The presentation
is given for more dense values of u = p, and presented
in Fig. 12. It is clearly seen how the SemiFinAR case
extend with the increase of the parameters shown. It is
important to note that there is a threshold of damping

Fig. 10 Change of the
coefficient K from Eq. (3)
with the mass ratio u

10— —-@

0.8 o

04

0.1 0.2

for which the SemiFinAR case appears, and it depends
on the number of units. This threshold decreases as the
number of units increases. The trend how it changes in
Figs. 9 and 12, indicates that for very small number of
them, the SemiFinAR case might be physically
unattainable, as for the range of { considered, the
NoAR and FinAR can only appear, as seen in Fig. 9.

Figure 13 shows when the SemiFinAR behaviour
appears depending on the combination of the non-
dimensional total mass being defined by u; =
(m+mp)n/m= (1+ wn and {. This diagram can
be seen from the point of view of the minimal total
mass for a certain non-dimensional damping ratio,
which are the cases depicted by the black dots. On the
other hand, these combinations of the parameters
plotted as the black dots can also be interpreted as the
so-called critical ones, since for the fixed u; and the
higher value of { than the one depicted by the black
dot, one can assure the appearance of the SemiFinAR
behaviour in the system.

For the sake of practical reasons, it is valuable to
know how the critical non-dimensional total damping
ratio changes with the influence of smaller number of
units and, therefore, smaller total mass. Such results
from Fig. 13 are presented in Fig. 14 for smaller
values of ur. In addition, the fitting numerical
procedure for a curve imbedding the black dots
resulted in the expression:

0.86
t= (4)
o
®

04 0.6 08 1.0

u
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Fig. 11 Behavioural
mapping plotted for p =

p = k and various n: a
n=10;bn=15,¢n =20
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Fig. 12 Behavioural
mapping plotted for 4 = pin
3D presentation for various
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X there is a conservation law for the critical non-
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0.02
3 Validations
0.01 .
% 3 £ 3.1 Experimental setup

Hy

. iy , , . , To provide experimental validation of the previous
Fig. 14 Critical values of the non-dimensional damping ratio

versus the total mass up for a smaller number of units (black theoretical findings, .a mfatastructure of n=10 is
dots) and the fitted curve (cyan solid line) produced, as shown in Fig. 15a. The external and

internal oscillators are 3D printed from polylactic acid
(PLA), as shown in the prototype of the unit cell in
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Accelerometer

Fig. 15 a Experimental set-up of the vibration testing of the metastructure with 10 unit cells; b Prototype of the mass-in-mass unit

Fig. 15b, the lengths of the external and internal
oscillators are L = 135mm and L; = 30.3mm,
respectively. Additional weight is added to the internal
oscillator to ensure that the nondimensional mass ratio
is u~ 1, as considered theoretically in the previous
section. Both the external mass m and the internal
mass m; are approximately 35.3 g, the deviations in
mass and mass ratio of the unit cells are both below
1.1%. All the oscillators are connected by the identical
springs, each with a stiffness of k = k; = 451.96N/m.
The deviations in stiffness are within 3.5%; therefore,
it can be reasonably assumed that x ~ 1, which is
consistent with the theoretical considerations.

In the experiment, the metastructure is placed
horizontally. To control the damping ratio during the

@ Springer

system’s motion, a triangular cross-sectional air track
was used. The metastructure is positioned on the air
track, and its base was designed in a A shape to
perfectly fit the track. The air track is driven by an air
pump, which creates high-pressure airflow through
small holes on the track’s surface, lifting each unit cell
off the track. The air pump has an adjustable power
output function to control the damping between the
prototype and the air track. One end of the metastruc-
ture is excited by a shaker (LDS V406, Briiel & Kjer),
while the other end is free. The shaker is powered by a
power amplifier (LDS LPA600, Briiel & Kjar), and
the excitation signal is a single-frequency sine wave.
The response curves from the excitation and the
terminal cell are captured as the system’s input and



Vibration control via finite and semi-infinite vibration attenuation regions

30509

output signals by two accelerometers. The two signals
are collected using a dynamic signal analyzer
(PHOTON + , Briiel & Kj®r) and subsequently
processed by a laptop installed with data recorder
software. By applying Fourier transform to the two
time-domain signals, the input amplitude A, and
output amplitude Ao in the frequency domain are
obtained.

3.2 Damping identification experiment

By varying the output power of the air pump, the
damping ratio of the external and internal oscillators
can be adjusted within a certain range. At different
pump power levels, the responses of the free decay
oscillation are recorded using accelerometers, and the
damping ratio of the system is measured using the
logarithmic decrement method. The decay curve of the
acceleration can be fitted to an exponential function
A, = Ae "' where A. is the varied acceleration
amplitude, A is a constant, and w, denotes the
undamped natural frequency.

The output power range of the air pump is 0-100, as
shown in the enlarged view of Fig. 15 (with 100 being
the maximum power). Enhancing the power can
increase the airflow rate, thereby further reducing the
system’s damping. Figures 16a and b show the decay
curves of the external oscillator at powers of 5 and
100, respectively. Fitting these curves yields damping
ratios of 0.055 and 0.0057.

a
) A
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0.4} A
0.0F \/\/\/\f
0.4
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Figure 17 shows the damping ratios of the external
and internal oscillators at six different output power. It
can be observed that with the increase of pump power,
the damping ratio is gradually smaller and tends to be
equal. For the external oscillator, the front and rear
contact surfaces jointly affect the damping ratio. At
lower powers, the differences in the contact conditions
between the two surfaces lead to an increase in the
friction coefficient, resulting in a damping ratio
greater than that of the internal oscillator. By increas-
ing the roughness of the contact surface between the
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Fig. 17 Damping ratio of the external and internal oscillators
with different pump output powers
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Fig. 16 The decay curves of the measured acceleration: a Output power of 5; b Output power of 100. The x-axis represents time [s],

and the y-axis represents the measured acceleration amplitude [g]
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Fig. 18 Frequency-response curves for three cases with
respect to the values of the damping ratio: Case 1, power of
the air pump = 100; Case 2, power of the air pump = 15; Case 3,
power of the air pump = 5 (The corresponding parameter values
are labelled in Fig. 9¢c)

internal oscillator and the track, the sliding damping of
the internal oscillator can be enhanced, leading to a
non-dimensional damping coefficient of p ~ 1, which
matches the theoretical considerations. The relevant
experimental details can be found in Appendix.

3.3 Frequency-response curves

To further validate the appearance of FinAR and
SemiFinAR, Fig. 18 presents the frequency-response
curves of the metastructure under three damping cases
when it =k = p = 1 and n = 10. The powers of the
air pump for Cases 1, 2, and 3 are 100, 15, and 5,
respectively. Note that these cases are also labelled in
the behavioural map presented in Fig. 9c.

The results indicate that increasing the damping of
the oscillators can effectively diminish the resonance
amplitudes on both sides of the bandgap. However, for
Case 2, the width of the bandgap remains limited,
similar to the FinAR case. When the damping ratio is
sufficiently high, as shown in Case 3, the response
amplitude on the right side of the bandgap is further
reduced to below the threshold, effectively validating
the SemiFinAR case.

Furthermore, with the system’s damping ratio
maintained approximately constant at 0.03, Fig. 19
presents the frequency—response curves of the metas-
tructure for the system with three different numbers of
masses. The number of units for Cases 4, 5, and 6 are
n =6, 10 and 17, respectively (these cases are also
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Fig. 19 Frequency-response curves for three cases with
respect to the numbers of masses: Case 4, n = 6; Case 5,
n = 10; Case 6, n = 17 (The corresponding parameter values are
labelled in Fig. 9¢)

labelled in the behavioural map presented in Fig. 9c to
indicate the parameter values to which they corre-
spond). It can be observed that as the number of units
increases, the width of the stopband expands, and the
FinAR case gradually evolves into the SemiFinAR
case.

4 Conclusions

This study has been concerned with theoretical and
experimental investigations of a longitudinally excited
chain of external linear oscillators with internal linear
oscillators attached to them for the sake of passive
vibration control. Following den Hartog’s concept, the
natural frequency of internal oscillators has been tuned
to the frequency of the external oscillators. The
theoretical analysis of the undamped chain has con-
firmed that a zero-amplitude response (stopband)
appears around the tuned frequency, and this has
further been used as a benchmark. For a smaller
number of these masses, the width of the stopband is
very small, but as this number increases, until appr. 10,
the width increases more rapidly, and then after app.
30 of them, its change becomes negligible, i.e. the
saturation phenomenon appears. Then, a linearly
viscously damped chain with external and internal
oscillators has been investigated in detail. Three cases
of qualitatively different vibration attenuation regions
have been identified: the case of no attenuation region,
a infinite vibration attenuation region (appearing
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between certain frequencies) and a semi-infinite
vibration attenuation region (appearing as limited on
the left-hand side frequency and yielding vibration
attenuation above this cut-off frequency). As far as the
authors are aware, these results are novel and are of
fundamental importance for vibration control. Further,
to get deeper insight into such distinctive response,
behavioural mapping has been done. Thus, it has been
determined when, depending on the combination of
the system parameter (the mass ratio, the non-dimen-
sional damping coefficient and the number of units),
each of three qualitatively different responses can take
place.

The investigations carried out have yielded another
novel result that the boundary between the finite and
semi-infinite vibration region changes in a nonlinear
way, i.e. that the non-dimensional damping coefficient
and the number of units are inversely proportional
with the coefficient that depends on the mass ratio. The
larger the mass ratio, the smaller this coefficient. It is
interesting to note that for the light subunits corre-
sponding to the mass ratio of 10%, this coefficient is
equal to unity. Another new result gained in this study
regards the fact that there is a threshold of damping for
which the case of a semi-infinite vibration attenuation
region appears, and it depends on the number of units.
This threshold decreases as the number of units
increases. For a very small number of units and the
range of the non-dimensional damping coefficient
considered, the case of a semi-infinite vibration
attenuation region can be physically unattainable.
This study has also innovatively introduced and
determined the critical non-dimensional damping
ratio. The values of the non-dimensional damping
ratio higher than this critical one, assure the appear-
ance of the semi-infinite vibration attenuation region
in the system response. Its dependence on the non-
dimensional total mass has been found to be nonlinear.
Another novel result obtained regards metastructures
with a smaller number of units and, therefore, smaller
total mass. It has been obtained that for this type of
chains, there is a conservation law for the critical non-
dimensional damping ratio and the minimal total mass
needed, meaning that their product is constant and
smaller than unity.

Theoretical findings have been checked experi-
mentally with an original way of damping control. A
metastructure has been 3D printed and placed on a
triangular cross-sectional air track, which has been
employed to regulate the damping ratio throughout the
motion of the metastructure. An air pump has been
utilised to power the air track, generating high-
pressure airflow through small apertures on the
surface. In this way, the air pump features an
adjustable power output capability, allowing for
precise control of the damping coefficient. The
experiment conducted with this setup has successfully
confirmed the existence of distinctive vibration atten-
uation regions.

Although the system considered has been linear
with respect to the stiffness and damping forces, the
investigations conducted revealed a nonlinear rela-
tionship between the non-dimensional damping coef-
ficient and the number of units corresponding to the
bifurcation line separating two qualitatively different
responses: the finite and semi-infinite vibration region,
as well as the nonlinear change of the critical non-
dimensional damping ratio with the non-dimensional
total mass that causes the appearance of the semi-
infinite vibration attenuation region. Future research
could be straightforwardly expanded to exploit non-
linearities in these two types of forces, for example a
hardening/softening/bistable/power-form  restoring
force and/or various polynomial power-form damping
forces, for the sake of widening a finite vibration
attenuation region reported herein or at lowering the
cut-off frequency of a semi-infinite vibration attenu-
ation region.
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Appendix

During the damping identification experiment, tests
were conducted separately for the isolated internal and
external oscillators. Each oscillator was subjected to
an identical initial displacement of 45 mm and then
released, as shown in Fig. 20. A representative unit is
selected to illustrate the influence of pump power on
the damping ratio, as shown in Fig. 17. Similar
phenomena were also observed in the other oscillators.
Surface roughness was increased by introducing
small, thin layers onto the contact surfaces of the
oscillator. Specifically, the addition of localized thin
layers reduces surface smoothness and introduces
uneven surface thickness, thereby enhancing the
overall roughness.

Fig. 20 The air track is marked with scales for measurements,
and the initial position of the oscillator is indicated
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