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Abstract This study deals with a longitudinally

excited chain of external linear oscillators, enhanced

with internal linear oscillators. The undamped case is

considered first as a benchmark, and then a viscously

damped chain is examined. Qualitatively different

vibration attenuation regions are identified, including

the cases of no attenuation region, a finite and semi-

infinite attenuation region, which represents a new

result for this type of chain of interest for vibration

control. The influence of the number of unit cells, the

mass and the damping ratio on their appearance is

examined thoroughly and illustrated in the form of

novel and original 2D and 3D behavioural maps,

which can be used as a design criterion for metastruc-

tures, but also for other systems modelled as this type

of chains. The nonlinear boundary between the finite

and semi-infinite vibration region involving the non-

dimensional damping coefficient and the number of

units is determined for the first time. Besides, the

nonlinear change of the critical non-dimensional

damping ratio, which assures the appearance of the

semi-infinite vibration attenuation region in the sys-

tem response, with the non-dimensional total mass, is

also innovatively obtained. The theoretical identifica-

tion of three distinct regions of vibration attenuation is

experimentally validated through an original damping

control method utilizing an air track and an air pump

with a variable power output capability.

Keywords Chain � Oscillators � Vibration
attenuation regions � Behavioural mapping

1 Introduction

Chains are widely known as representing a sequence

of items of the same type forming a line, a set of

connected or related things, or as something that

confines, restrains or secures [1]. Chains appear in

nature, everyday life as well as in science and

engineering. In nature, one can recognize, chains of

mountains and islands, or food chains. In everyday

life, there are chains of events, supply chains, chains of

stores, etc. [2]. There is also a chain of action and

reaction, and one of the most powerful examples of the

latter is nuclear fission. In structural engineering,

chains are used either for lifting and securing, or for

transferring power in machines. Besides this, the chain
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is a unit of length equal to 66 feet [3], used in both the

US customary and Imperial unit systems; it is the ba-

sic unit for measuring distances in fire-control work.

Oscillatory chains appear as a distinctive model of

various biological, physical, or engineering systems

[4, 5]. There have been two types of co-axial

oscillatory chains that can be considered as prominent

and pivotal during the previous century or so for the

developments in science and engineering, especially

related to mechanics and solid-state physics. Chrono-

logically speaking, the first one is related to the name

and work of den Hartog [6] and the second one to the

names of Fermi, Pasta and Ulam [7].

Den Hartog’s work involves the chain in which the

main (host) oscillatory structure is enhanced with the

auxiliary oscillator, playing the role of the vibration

absorber (tuned mass damper) that is tuned to the

structural and excitation resonance frequency so that it

reduces the resonance response of the host structure

[6]. This theoretical foundation has resulted in the

advancements in plethora of optimizing approaches of

various vibration suppression devices [8–11], which

are widely used nowadays in structural, automotive

and aerospace engineering. Some of the respective

examples include the world’s tallest skyscrapers (e.g.

Taipei 101 tower in Taipei City and Burj al-

Arab in Dubai), cars produced by the world’s most

famous automobile manufacturers (e.g. Renault F1

car, Citroën 2CV, BMW 320D) as well as space

vehicles (e.g. NASA’s crew launch vehicle called

Ares).

On the other hand, Fermi, Pasta and Ulam’s

oscillatory chain [7] stems from the original idea of

Fermi to simulate the one-dimensional analogue of

atoms in a crystal as a long chain of particles linked by

springs with weak nonlinear correction either quad-

ratic or cubic one to its linear stiffness characteristic.

This system behaved in a surprising way: contrary to

the predictions of statistical mechanics when the

number of particles is going to infinity, the energy

equipartition state was not reached, and energy was

periodically returning to the initially excited mode.

This highly remarkable result, known as the FPU

paradox, shows that nonlinearity is not enough to

guarantee the equipartition of energy, which marked

the beginning of nonlinear physics, the theories

of solitons and chaos, and also the age of computer

simulations of scientific problems.

The idea about the use of chain of oscillators has

also recently been brought to bear in metamaterials

and metastructures for controlling their low-frequency

vibrations [12, 13], with the horizons being opened by

the Science paper [14]. Given the fact that our work

addresses their utilization for passive longitudinal

vibration control, the overview of the state-of-the-art

is given related to the findings about attenuation zones

(bandgaps) within which the zero or low transmissi-

bility is achieved. In [15], a slender beam with

periodically attached oscillators was studied. The

maximum of attenuation was observed at the resonant

frequency of the oscillators as inversely proportional

to the mass ratio of the mass of the oscillator and the

mass of the beam per period and proportional to the

stiffness ratio of the oscillator and the equivalent

stiffness of the beam per period. It was demonstrated

in [16] that a metamaterial containing multiple

microstructures with a spectrum of local resonance

frequencies enables the system to have a significantly

reduced magnitude of the waves generated by the

dynamic source. In [17], the same mechanical model

was studied, showing that the effective mass density is

frequency-dependent and may become negative near

the resonance frequency of the internal mass. In [18], a

uniform rod with periodically attached multi-degree-

of-freedom spring–mass oscillators were examined.

The bandgap formation mechanisms are explained,

and expression derived for the band edge frequencies.

In [19], the case of periodically attached multi-degree-

of-freedom local oscillators was investigated. Exper-

iments showed that low damping vibration responses

exist before the bandgap and high damping vibration

responses appear after the bandgap. The study [20]

demonstrated that a working principle of metamate-

rial-based elastic wave absorber corresponds to the

concept of conventional den Hartog vibration absor-

bers [6]. This concept was extended to design a

broadband absorber that works well for elastic waves

of any wavelengths, including those shorter than the

unit cell’s length. In [21], the metamaterial whose

stopband commences at 0 Hz is presented. The

dominant effect of mass and stiffness of discrete units

on the transmissibility is found to be dominant with

respect to the effect of damping on the stopband was

found to be relatively small when compared with the

effects of mass and stiffness. In [22], the concept of

integrated internal oscillators in a longitudinally

excited metastructure extended presented and then
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analysed in detail in [23]. The latter study compared a

metastructure with vibration absorbers to a structure of

equal mass with no absorbers. Numerical simulations

showed that the distributed absorbers should be

designed such that their natural frequencies span a

range of frequencies. This concept was further

considered in [24], where a minimal number of

absorbers is obtained, yielding the proper tuning

between the metastructure and internal oscillators

and resulting in the desirable vibration attenuation

around the first resonance.

The current study aims to contribute to the funda-

mental knowledge and demonstrate its original appli-

cations by linking two previously described prominent

models of den Hartog [6] and Fermi, Pasta and Ulam

[7] in an original way to determine its benefits for

vibration suppression in metamaterials and metastruc-

tures modelled as chains of oscillators. The links with

den Hartog’s work will be established in a way that the

same type of tuning will be defined: internal oscillators

will have the natural frequency adjusted to the natural

frequency of the external (main) oscillators. The links

with Fermi, Pasta and Ulam’s work assumes the

investigations of the influence of the increasing

number of oscillatory units to the response of the

chain. In addition, this study also contains the original

contribution of the influence of damping, revealing

qualitatively different outcomes in terms of a finite and

semi-infinite vibration attenuation region, which are

seen to be opening horizons for practical applications,

not only for metastructures, but also for systems from

other fields modelled as the same type of chains of

oscillators.

2 Chain of mass-in-mass units: den Hartog’s

tuning

A mechanical model considered corresponds to a

chain of repetitive mass-in-mass units (Fig. 1). The

external (host, main) masses m that stand for the basic

structure are attached mutually via linear springs of

stiffness k. The internal oscillators are uniform, i.e.

they are all equal: each has the mass m1 and it is

attached to the external mass via linear spring of

stiffness k1. The structure is exposed to the base

excitation Z0cosXt and it exhibits longitudinal vibra-

tions. The generalized coordinates for the ith unit are

labelled, respectively, by the absolute coordinates xi
and yi, where i = 1, …, n.

2.1 Undamped model

The undamped case is considered for the sake of

subsequent comparison with the damped case. The

equations of motion for the ith unit can be written

down as

m€xi þ k 2xi � xi�1 � xiþ1ð Þ � k1 yi � xið Þ ¼ 0

m1 €y1 þ k1 yi � xið Þ ¼ 0:
ð1Þ

The natural frequencies of each external and

internal oscillator are respectively given by x0 ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

and x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1=m1:
p

Besides these substitu-

tions, the following non-dimensional parameters are

introduced: the non-dimensional frequency as the ratio

of the excitation frequency and the natural frequency

of the external oscillator w ¼ X=x0; the non-dimen-

sional stiffness as the ratio of the stiffness coefficient

of the internal and external oscillator j ¼ k1=k; the

non-dimensional mass as the ratio of the mass of the

internal and external oscillator l ¼ m1=m.

Given the fact that the system considered is linear,

the solutions for motion can be taken in the form

proportional to the excitation [25]. Then, the set of

resulting equations of motion is solved analytically in

Wolfram Mathematica for each fixed value of n with a

view to determining the amplitude of the last main

mass An, i.e. the top of the metastructure, as labelled in

Fig. 1. Note that for the first unit, one needs to include

the base excitation into the corresponding equation of

motion.

The way how the nondimensional amplitude An=Z0

changes with the nondimensional frequency w, is

shown in Fig. 2. The stopband is also indicated. This

region appears between the left and right resonance

values wL and wR, which are placed here at the

corresponding vertical asymptotes.

Of further interest is to determine how the width of

this stopband Dw changes with the number of units n

for the reduction of An being 60 dB. These results are

obtained numerically. Given the fact that the model is

conservative, this high reduction assures that the

amplitude will be as close to zero as possible. The

nondimensional mass ratio is assumed to be l ¼ 1

(note that this value will be changed later on), while

the nondimensional stiffness ratio is also taken to be
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j ¼ 1 for the whole study as well as that the

nondimensional mass ratio takes the same value. It

should also be noted that this case corresponds to the

classical den Hartog’s tuning, m1=m ¼ k1=k ¼ 1,

which implies that the natural frequencies of the

internal and external oscillators are tuned to each other

x0 ¼ x1. The change of Dw with n ranging from 0 to

100 is presented in Fig. 3. The enlargement of this

figure for a smaller number of internal masses until 10

is given on the right part of Fig. 3. It can be concluded

that for a smaller number of these masses, the width of

the stopband is very small. As this number increases,

until appr. 10, the width increases more rapidly, and

then after app. 30 of them, its change becomes

negligible, i.e., the saturation phenomenon appears.

This implies that adding more units will not widen the

attenuation region.

The way how the width of the stopband Dw changes

with the number of units n for various mass ratios l is

plotted in Fig. 4a. It is seen that as l decreases from

unity, this width narrows down as well. However, this

change is qualitatively the same as the one shown in

Fig. 3, meaning that as the number of units gets larger,

the phenomenon of saturation appears and there is no

further widening of the stopband.

The relocations of the vertical asymptotes wL and

wR with the number of units n for various mass ratios l
is presented in Fig. 4b. As this ratio becomes smaller,

both wL and wR approach the value w = 1, consider-

ably narrowing down the width of the stopband.

2.2 Damped model

To take into account the influence of damping, linear

viscous dampers are introduced into the mechanical

model of a metastructure as shown in Fig. 5 they are

set in parallel with the springs that connect units

mutually as well in parallel with the springs that

connect each internal mass with the external one. The

damping coefficient of the former is labelled by b, and

the latter by b1.

The equations of motion for the ith unit can now be

extended to

m€xi þ b 2 _xi � _xi�1 � _xiþ1ð Þ þ k 2xi � xi�1 � xiþ1ð Þ
�b1 _yi � _xið Þ � k1 yi � xið Þ ¼ 0

m1 €yi þ b1 _yi � _xið Þ þ k1 yi � xið Þ ¼ 0:

ð2Þ

As in the previous section, the non-dimensional

frequency w, the non-dimensional stiffness j, and the

non-dimensional mass l are introduced. In addition,

the non-dimensional damping coefficient is defined as

q ¼ b1=b, while the non-dimensional damping ratio is

taken as f ¼ b= 2mx0ð Þ.
The system of equations of motion is again solved

analytically in Wolfram Mathematica for each fixed

value of n to obtain An. Since An involves rational

functions with polynomials of degree 8n, certain

algebraic manipulations are required to make this term

Fig. 1 Mechanical model under consideration with mass-in-mass units

Fig. 2 Frequency–response function for the top mass in the

undamped chain with the stopband labelled
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suitable for further use in numerical algorithms. Given

the calculation requirement, all calculations for

n[ 40 are done with High Performance Computing,

during which a server AMD EPYC 7282 processor

with 16 cores, 32 threads, and 128GB RAM was used.

The reduction of the amplitude of the top mass Anwith

respect to the excitation amplitude is set to correspond

to 20 dB. Typical and qualitatively different illustra-

tive forms of its frequency–response function are

presented in Fig. 6. The one presented in Fig. 6a is

when such reduction is not achieved along the

frequency region considered, i.e. up to w = 2. The

next one shown in Fig. 6b is similar to the one from

Fig. 2 with respect to the existence of a bandgap

Fig. 3 Change of the width of the stopband with the number of units n; The enlarged part of the graph on the righthand side is shown for
a smaller number of units n

Fig. 4 a Change of the width of the stopband Dw with the number of units n for various mass ratios l; b Relocation of the vertical

asymptotes wL and wR with the number of units n for various mass ratios l

Fig. 5 Mechanical model of under consideration with mass-in-mass units
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bounded on both sides, i.e. it is limited byWL andWR.

In the case presented in Fig. 6c, the attenuation

appears in a frequency region bounded on the left-

hand side only byWL, which means that it is of a semi-

infinite width. This is similar to a vibration isolation

region that appears in a linear one-degree of freedom

externally excited system [26]. The first case will be

referred subsequently as the NoAR (no attenuation

region), the second case as FinAR (finite attenuation

region), and the third one as SemiFinAR (semi-infinite

attenuation region), and as far as the authors are aware,

this distinction and characterization appears for the

first time in the context of vibration control of the

chains under consideration.

To examine the influence of the number of units

n on the appearance of FinAR and SemiFinAR, it is

again assumed that l = q = j = 1. Figure 7 shows

the width of the attenuation region changes when the

non-dimensional damping ratio is taken first to be

f = 0.01 (magenta dots). The curve for the undamped

system from Fig. 3a is also plotted (blue dots) to

emphasize the qualitative and quantitative changes. It

is seen that the width is finite only until a certain

number of the masses (app. 40 of them), and then the

case of the semi-infinite one occurs as the magenta

curve does not appear anymore. So, unlike the

undamped case when the width becomes constant

after app. 10 masses, in the damped case, the width

monotonously increases until a considerably larger

number of units and then it turns into SemiFinAR. As

also shown in Fig. 7, if f takes larger values, the

SemiFinAR case appears for a smaller number of

units.

The enlargement of these curves for both the

undamped and damped case is shown in the right part

of Fig. 7. It is seen that for a smaller number of units

(until app. 10 of them), the undamped and lightly

damped system behave almost the same in this respect

as the width of FinAR is equal or almost equal to the

undamped case (the magenta and blue dots coincide or

are very close to each other).

The way how the width of the attenuation region

Dw changes with the number of units n for various

Fig. 6 Qualitatively different frequency–response functions

for the top mass in the damped metastructure obtained for

l = q = 0.1, f = 0.04 and the desired vibration attenuation of

20 dB: a NoAR case (the graph is obtained for n = 3); b FinAR

case (the graph is obtained for n = 10); c SemiFinAR case (the

graph is obtained for n = 28)

123

30502 I. Kovacic et al.



mass ratios l is plotted in Fig. 8a. It is seen that as l
decreases from unity, this width narrows down, as was

the case in the undamped system as well. However,

unlike therein, when l is very small, it does not exist

for a smaller number of units. In addition, as l
increases, the SemiFinAR case appears for a smaller

number of units.

The relocations of the boundaries of the FinARwith

the number of units n is presented in Fig. 8b. The left

boundary always exists, and its value decreases with

the increase of n, while the right one moves towards

higher frequency and then disappears, meaning that

the SemiFinAR takes place.

It is of interest now to carry out behavioural

mapping, i.e. determine when, depending on the

combination of the system parameter, each of three

qualitatively different responses from Fig. 6 will take

place. Such behavioural maps in 2D are given in Fig. 9

for various values of l ¼ q ¼ j: When these values

are small as shown in Fig. 9a for l ¼ q ¼ 0:1; the

dominant is the case of FinAR, while SemiFinAR

appears for after a certain number of units (app. 20),

and then this region widens for larger damping. The

case of NoAR exists only for a very small number of

units and widens for larger damping. As the value of

l ¼ q increases, this region disappears, while the case

of SemiFinAR extends, as seen in Fig. 9b, c. These

diagrams can be used for the design of the metastruc-

ture, defining the combination of the number of units

and damping for a given l ¼ q that will yield the

SemiFinAR response, and, thus, beneficial vibration

performance in a wider frequency region.

What is pointed out in Fig. 9 by the black solid line

is the boundary between the SemiFinAR and FinAR

region. Numerical investigations have shown that this

Fig. 7 Change of the width of the attenuation region with the

number of units n in the damped chain (magenta dots, asterisks

and squares correspond to FinAR) and the undamped one (blue

solid line is the repetition of the results from Fig. 3); The

enlarged part of the graph on the righthand side is shown for a

smaller number of units n

Fig. 8 Change of the width of the stopband Dw with the number of units n for various mass ratios l; b Relocation of the left and right

boundaries wR and wL with the number of units n for various mass ratios l

123

Vibration control via finite and semi-infinite vibration attenuation regions 30503



Fig. 9 Behavioural

mapping plotted in 2D for

various values of l ¼ q: a
l ¼ q ¼ 0:1; b
l ¼ q ¼ 0:6; c l ¼ q ¼ 1

(Cases 1–6 are discussed in

Sect. 3.3 and are associated

with the diagrams presented

in Figs. 18 and 19)
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boundary can be approximately expressed by the

equation:

f ¼ K lð Þ
n

; ð3Þ

implying that the non-dimensional damping coeffi-

cient and the number of units are inversely propor-

tional with the coefficient K lð Þ that depends on the

mass ratio l, which is a new result. The way how this

coefficient changes with l is presented in Fig. 10. It is

seen that the larger the mass ratio, the smaller the

coefficient K. It is interesting to note that for the light

subunits corresponding to l = 0.1, one has

K 0:1ð Þ ¼ 1:

In Fig. 11, behavioural mapping is shown for

several values of the number of units. As n increases,

there is a larger number of combinations of the non-

dimensional mass ratio l and the non-dimensional

damping ratio f yielding the SemiFinAR response. So,

for lighter metastructures, the higher the number of

units, the smaller damping is needed to achieve it.

To get deeper insight into the change of distribution

of the characteristic regions, the behavioural mapping

is created in 3D as dependent on the number of units n,

the non-dimensional damping ratio f, and the non-

dimensional mass ratio l being equal to the non-

dimensional damping coefficient q. The presentation

is given for more dense values of l ¼ q, and presented
in Fig. 12. It is clearly seen how the SemiFinAR case

extend with the increase of the parameters shown. It is

important to note that there is a threshold of damping

for which the SemiFinAR case appears, and it depends

on the number of units. This threshold decreases as the

number of units increases. The trend how it changes in

Figs. 9 and 12, indicates that for very small number of

them, the SemiFinAR case might be physically

unattainable, as for the range of f considered, the

NoAR and FinAR can only appear, as seen in Fig. 9.

Figure 13 shows when the SemiFinAR behaviour

appears depending on the combination of the non-

dimensional total mass being defined by lT ¼
mþ m1ð Þn=m ¼ 1þ lð Þn and f. This diagram can

be seen from the point of view of the minimal total

mass for a certain non-dimensional damping ratio,

which are the cases depicted by the black dots. On the

other hand, these combinations of the parameters

plotted as the black dots can also be interpreted as the

so-called critical ones, since for the fixed lT and the

higher value of f than the one depicted by the black

dot, one can assure the appearance of the SemiFinAR

behaviour in the system.

For the sake of practical reasons, it is valuable to

know how the critical non-dimensional total damping

ratio changes with the influence of smaller number of

units and, therefore, smaller total mass. Such results

from Fig. 13 are presented in Fig. 14 for smaller

values of lT: In addition, the fitting numerical

procedure for a curve imbedding the black dots

resulted in the expression:

f ¼ 0:86

lT
: ð4Þ

Fig. 10 Change of the

coefficient K from Eq. (3)

with the mass ratio l
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Fig. 11 Behavioural

mapping plotted for l ¼
q ¼ j and various n: a
n ¼ 10; b n ¼ 15; c n ¼ 20
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This implies that, in this type of metastructures,

there is a conservation law for the critical non-

dimensional damping ratio and the minimal total mass

needed, meaning that their product is constant and

smaller than unity, i.e. flT ¼ 0:86:

3 Validations

3.1 Experimental setup

To provide experimental validation of the previous

theoretical findings, a metastructure of n ¼ 10 is

produced, as shown in Fig. 15a. The external and

internal oscillators are 3D printed from polylactic acid

(PLA), as shown in the prototype of the unit cell in

Fig. 12 Behavioural

mapping plotted for l ¼ qin
3D presentation for various

n and f

Fig. 13 The appearance of

the SemiFinAR case (green

dots) for the combination of

the total mass lT and f,
where the black dots stand

for the minimal total mass

needed for a certain

(critical) non-dimensional

damping ratio

Fig. 14 Critical values of the non-dimensional damping ratio

versus the total mass lT for a smaller number of units (black

dots) and the fitted curve (cyan solid line)
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Fig. 15b, the lengths of the external and internal

oscillators are L ¼ 135mm and L1 ¼ 30:3mm,

respectively. Additional weight is added to the internal

oscillator to ensure that the nondimensional mass ratio

is l � 1, as considered theoretically in the previous

section. Both the external mass m and the internal

mass m1 are approximately 35.3 g, the deviations in

mass and mass ratio of the unit cells are both below

1.1%. All the oscillators are connected by the identical

springs, each with a stiffness of k ¼ k1 ¼ 451:96N=m.

The deviations in stiffness are within 3.5%; therefore,

it can be reasonably assumed that j � 1, which is

consistent with the theoretical considerations.

In the experiment, the metastructure is placed

horizontally. To control the damping ratio during the

system’s motion, a triangular cross-sectional air track

was used. The metastructure is positioned on the air

track, and its base was designed in a K shape to

perfectly fit the track. The air track is driven by an air

pump, which creates high-pressure airflow through

small holes on the track’s surface, lifting each unit cell

off the track. The air pump has an adjustable power

output function to control the damping between the

prototype and the air track. One end of the metastruc-

ture is excited by a shaker (LDS V406, Brüel & Kjær),

while the other end is free. The shaker is powered by a

power amplifier (LDS LPA600, Brüel & Kjær), and

the excitation signal is a single-frequency sine wave.

The response curves from the excitation and the

terminal cell are captured as the system’s input and

Fig. 15 a Experimental set-up of the vibration testing of the metastructure with 10 unit cells; b Prototype of the mass-in-mass unit
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output signals by two accelerometers. The two signals

are collected using a dynamic signal analyzer

(PHOTON ? , Brüel & Kjær) and subsequently

processed by a laptop installed with data recorder

software. By applying Fourier transform to the two

time-domain signals, the input amplitude A0 and

output amplitude A10 in the frequency domain are

obtained.

3.2 Damping identification experiment

By varying the output power of the air pump, the

damping ratio of the external and internal oscillators

can be adjusted within a certain range. At different

pump power levels, the responses of the free decay

oscillation are recorded using accelerometers, and the

damping ratio of the system is measured using the

logarithmic decrement method. The decay curve of the

acceleration can be fitted to an exponential function

Ac ¼ Ae�fx0t, where Ac is the varied acceleration

amplitude, A is a constant, and x0 denotes the

undamped natural frequency.

The output power range of the air pump is 0–100, as

shown in the enlarged view of Fig. 15 (with 100 being

the maximum power). Enhancing the power can

increase the airflow rate, thereby further reducing the

system’s damping. Figures 16a and b show the decay

curves of the external oscillator at powers of 5 and

100, respectively. Fitting these curves yields damping

ratios of 0.055 and 0.0057.

Figure 17 shows the damping ratios of the external

and internal oscillators at six different output power. It

can be observed that with the increase of pump power,

the damping ratio is gradually smaller and tends to be

equal. For the external oscillator, the front and rear

contact surfaces jointly affect the damping ratio. At

lower powers, the differences in the contact conditions

between the two surfaces lead to an increase in the

friction coefficient, resulting in a damping ratio

greater than that of the internal oscillator. By increas-

ing the roughness of the contact surface between the

Fig. 16 The decay curves of the measured acceleration: a Output power of 5; b Output power of 100. The x-axis represents time [s],

and the y-axis represents the measured acceleration amplitude [g]

Fig. 17 Damping ratio of the external and internal oscillators

with different pump output powers
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internal oscillator and the track, the sliding damping of

the internal oscillator can be enhanced, leading to a

non-dimensional damping coefficient of q � 1, which

matches the theoretical considerations. The relevant

experimental details can be found in Appendix.

3.3 Frequency–response curves

To further validate the appearance of FinAR and

SemiFinAR, Fig. 18 presents the frequency–response

curves of the metastructure under three damping cases

when l ¼ j ¼ q ¼ 1 and n ¼ 10. The powers of the

air pump for Cases 1, 2, and 3 are 100, 15, and 5,

respectively. Note that these cases are also labelled in

the behavioural map presented in Fig. 9c.

The results indicate that increasing the damping of

the oscillators can effectively diminish the resonance

amplitudes on both sides of the bandgap. However, for

Case 2, the width of the bandgap remains limited,

similar to the FinAR case. When the damping ratio is

sufficiently high, as shown in Case 3, the response

amplitude on the right side of the bandgap is further

reduced to below the threshold, effectively validating

the SemiFinAR case.

Furthermore, with the system’s damping ratio

maintained approximately constant at 0.03, Fig. 19

presents the frequency–response curves of the metas-

tructure for the system with three different numbers of

masses. The number of units for Cases 4, 5, and 6 are

n = 6, 10 and 17, respectively (these cases are also

labelled in the behavioural map presented in Fig. 9c to

indicate the parameter values to which they corre-

spond). It can be observed that as the number of units

increases, the width of the stopband expands, and the

FinAR case gradually evolves into the SemiFinAR

case.

4 Conclusions

This study has been concerned with theoretical and

experimental investigations of a longitudinally excited

chain of external linear oscillators with internal linear

oscillators attached to them for the sake of passive

vibration control. Following den Hartog’s concept, the

natural frequency of internal oscillators has been tuned

to the frequency of the external oscillators. The

theoretical analysis of the undamped chain has con-

firmed that a zero-amplitude response (stopband)

appears around the tuned frequency, and this has

further been used as a benchmark. For a smaller

number of these masses, the width of the stopband is

very small, but as this number increases, until appr. 10,

the width increases more rapidly, and then after app.

30 of them, its change becomes negligible, i.e. the

saturation phenomenon appears. Then, a linearly

viscously damped chain with external and internal

oscillators has been investigated in detail. Three cases

of qualitatively different vibration attenuation regions

have been identified: the case of no attenuation region,

a infinite vibration attenuation region (appearing

Fig. 18 Frequency–response curves for three cases with

respect to the values of the damping ratio: Case 1, power of

the air pump = 100; Case 2, power of the air pump = 15; Case 3,

power of the air pump = 5 (The corresponding parameter values

are labelled in Fig. 9c)

Fig. 19 Frequency–response curves for three cases with

respect to the numbers of masses: Case 4, n = 6; Case 5,

n = 10; Case 6, n = 17 (The corresponding parameter values are

labelled in Fig. 9c)
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between certain frequencies) and a semi-infinite

vibration attenuation region (appearing as limited on

the left-hand side frequency and yielding vibration

attenuation above this cut-off frequency). As far as the

authors are aware, these results are novel and are of

fundamental importance for vibration control. Further,

to get deeper insight into such distinctive response,

behavioural mapping has been done. Thus, it has been

determined when, depending on the combination of

the system parameter (the mass ratio, the non-dimen-

sional damping coefficient and the number of units),

each of three qualitatively different responses can take

place.

The investigations carried out have yielded another

novel result that the boundary between the finite and

semi-infinite vibration region changes in a nonlinear

way, i.e. that the non-dimensional damping coefficient

and the number of units are inversely proportional

with the coefficient that depends on themass ratio. The

larger the mass ratio, the smaller this coefficient. It is

interesting to note that for the light subunits corre-

sponding to the mass ratio of 10%, this coefficient is

equal to unity. Another new result gained in this study

regards the fact that there is a threshold of damping for

which the case of a semi-infinite vibration attenuation

region appears, and it depends on the number of units.

This threshold decreases as the number of units

increases. For a very small number of units and the

range of the non-dimensional damping coefficient

considered, the case of a semi-infinite vibration

attenuation region can be physically unattainable.

This study has also innovatively introduced and

determined the critical non-dimensional damping

ratio. The values of the non-dimensional damping

ratio higher than this critical one, assure the appear-

ance of the semi-infinite vibration attenuation region

in the system response. Its dependence on the non-

dimensional total mass has been found to be nonlinear.

Another novel result obtained regards metastructures

with a smaller number of units and, therefore, smaller

total mass. It has been obtained that for this type of

chains, there is a conservation law for the critical non-

dimensional damping ratio and the minimal total mass

needed, meaning that their product is constant and

smaller than unity.

Theoretical findings have been checked experi-

mentally with an original way of damping control. A

metastructure has been 3D printed and placed on a

triangular cross-sectional air track, which has been

employed to regulate the damping ratio throughout the

motion of the metastructure. An air pump has been

utilised to power the air track, generating high-

pressure airflow through small apertures on the

surface. In this way, the air pump features an

adjustable power output capability, allowing for

precise control of the damping coefficient. The

experiment conducted with this setup has successfully

confirmed the existence of distinctive vibration atten-

uation regions.

Although the system considered has been linear

with respect to the stiffness and damping forces, the

investigations conducted revealed a nonlinear rela-

tionship between the non-dimensional damping coef-

ficient and the number of units corresponding to the

bifurcation line separating two qualitatively different

responses: the finite and semi-infinite vibration region,

as well as the nonlinear change of the critical non-

dimensional damping ratio with the non-dimensional

total mass that causes the appearance of the semi-

infinite vibration attenuation region. Future research

could be straightforwardly expanded to exploit non-

linearities in these two types of forces, for example a

hardening/softening/bistable/power-form restoring

force and/or various polynomial power-form damping

forces, for the sake of widening a finite vibration

attenuation region reported herein or at lowering the

cut-off frequency of a semi-infinite vibration attenu-

ation region.
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Appendix

During the damping identification experiment, tests

were conducted separately for the isolated internal and

external oscillators. Each oscillator was subjected to

an identical initial displacement of 45 mm and then

released, as shown in Fig. 20. A representative unit is

selected to illustrate the influence of pump power on

the damping ratio, as shown in Fig. 17. Similar

phenomena were also observed in the other oscillators.

Surface roughness was increased by introducing

small, thin layers onto the contact surfaces of the

oscillator. Specifically, the addition of localized thin

layers reduces surface smoothness and introduces

uneven surface thickness, thereby enhancing the

overall roughness.
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